Image Mosaicing and a Diagrammatic User Interface
for an Office Whiteboard Scanner

Eric Saund
Xerox Palo Alto Research Center
3333 Coyote Hill Rd., Palo Alto, CA 94304

saund@parc.xerox.com

Abstract

This paper presents two computer vision compo-
nents underlying a novel camera-based whiteboard
scanner now in routine use al our research center.
First, a fully-automatic feature-based mosaicing algo-
rithm enables high-resolution whiteboard imaging us-
ing a video resolution pan/tilt camera, requiring mini-
mal frame overlap even in the presence of sparse curvi-
linear data. Second, real-time activity detection cou-
pled with grouping-based line drawing analysis enable a
Diagrammatic User Interface whereby commands are
1ssued to the system by drawing on the whiteboard it-
self. This application represents a step toward re-
ducing the barrier between the physical and electronic
workspaces.

1 Introduction

Few creative workplaces lack a whiteboard or chalk-
board. The form factor of whiteboard-scale surfaces
affords pacing, gesticulating, sharing with large and
small groups, and stepping back to get a look at the
big picture. Small office whiteboards support con-
versations, lists, and notes; medium size conference
room whiteboards participate in presentations and
group collaborations; large whiteboard walls maintain
organizational reference material including schedules,
timetables, and assignment postings.

The existence of several commercial devices for on-
line or offline whiteboard image capture suggests that
indeed the material drawn on whiteboards often is
valuable and worth preserving. Most of these in-
volve a specially instrumented device that severely
limits drawing area [10, 11, 2]. By contrast, camera-
based whiteboard image capture using a single snap-
shot severely limits image resolution[14].

Image mosaicing permits the capture of large ar-
eas at high resolution, e.g. [13, 3, 15]. Solutions in-
volving hand-held video cameras are, however, cum-
bersome and daunting for users, especially in business
environments where priorities of meeting content and

social interaction preclude virtually any form of “fight-
ing with technology.”

We have therefore endeavored to build office appli-
ances that employ computer vision and other technol-
ogy in order to offer users electronically-enabled en-
hanced functionality, but in a “calm” setting [16]. By
mounting a pan/tilt camera in the ceiling, the physical
machinery for whiteboard capture is moved out of the
way, to a place where it can double as a user interface
input device. Capture of the needed zoomed-in frames
is fully automated; a “photograph” of the whiteboard
appears on a nearby printer a few minutes after a scan
command is issued.

In addition to a web-based user interface and a
physical “GO” button, we provide a Diagrammatic
User Interface (DUI), that continually monitors ac-
tivity in front of the whiteboard and watches for users
to draw and annotate “buttons” indicating commands
and their associated parameters. Whereas a physical
button is the most straightforward mechanism for get-
ting a machine to do something, a diagram is often the
most effective way of indicating spatial information,
while handprinting is a natural medium for convey-
ing symbolic data. Stafford-Fraser describes an initial
exploration of this idea [12].

Our system, called “ZombieBoard” (it brings to
electronic life the ink marks on a whiteboard), has
successfully been in routine use at our research cen-
ter since the spring of 1997, and during that time has
delivered several hundred images to non-expert users.
This paper is in two major sections. Section 2 de-
scribes the feature-based mosaicing algorithm; Section
3 describes the Diagrammatic User Interface. By ne-
cessity of brevity, this overview of ZombieBoard omits
many details and important considerations. A more
complete description of the system is presented in [8].

2 Feature-Based Image Mosaicing
The automatic construction of image mosaics from
multiple overlapping images has recently become a

popular outgrowth of computer vision research. The
basic mosaicing problem is to determine image trans-
formation parameters (e.g. pure translation, affine,
true perspective) for all component snapshots that will
align snapshots’ overlapping regions without show-
ing seams. Two basic approaches have been taken;
both seek transformation parameters that optimize
an objective function. Motion-based alignment meth-
ods seek to minimize some cost function (such as
sum of squared error) of pixel-by-pixel intensity dif-
ferences in the overlap regions of overlapping snap-
shots. These methods are related to optical flow algo-
rithms by the use of intensity gradients to direct the
search over transformation parameters. Alternatively,
feature-based alignment methods first identify corre-
sponding features in overlapping snapshots, then seek
image transformation parameters that optimally align
the features.

Motion-based methods typically require substantial
overlap between successive image snapshots, and typi-
cally require significant image texture in order to align
the frames. For a whiteboard scanning application,
however, it cannot be guaranteed that markings will
be present over the entire board surface. In fact it
is common to encounter a great deal of blank space.
Furthermore, in the interest of image capture and pro-
cessing efficiency, we seek to grab as few frames as pos-
sible with a minimal amount of overlap between them.
For these reasons we have developed a fully-automatic
feature-based mosaicing technique.

By employing a computer-controlled pan/tilt cam-
era, we gain control over the input data in comparison
with images from hand-held cameras. Through cali-
bration of the camera’s position and orientation with
respect to the whiteboard, an initial dead-reckoning
estimate of the perspective transformation from image
coordinates to reconstructed whiteboard coordinates
is computed from the pan/tilt calibration parameters
and the ostensible pan and tilt settings for each snap-
shot. Unavoidable errors in camera calibration, how-
ever, lead to residual mismatch between overlapping
tiles. The bulk of the computational effort is therefore
directed to finding corresponding features and refining
the snapshot transform parameters that will lead to a
coherent mosaic image without seams.

2.1 Selection of Features

The first step of the mosaicing procedure is to find
corresponding image features for every pair of image
snapshots predicted to overlap one another based on
dead-reckoning information. In a whiteboard scan-
ning application it is not uncommon for a snapshot
overlap region to contain markings consisting only of

1
|
|
|
|
|
I
I
|
L
'

Figure 1: “Aperture” problem in feature correlation.
Shown are the overlapping regions of two image snap-
shots. The image patch at the top of the “6” can be
well localized, while the line-like image patch below
can slide along the corresponding image region in the
other snapshot.

relatively straight lines and therefore providing only
one direction of constraint for feature matches. Fig-
ure 1 illustrates this “aperture” problem. Our feature
selection algorithm therefore preferentially selects im-
age patches providing constraint in two dimensions,
and secondarily, image patches providing constraint
along only one direction.

2.2 Feature Matching

Each feature of every snapshot is matched with
corresponding features in overlapping snapshots us-
ing coarse-to-fine correlation. Experience has shown
it important to perform feature correlation to subpixel
accuracy. This is obtained by fitting an ellipsoid to
the correlation scores in the vicinity of the best pixel-
quantized correlation match.

The ellipsoid fit also performs an important func-
tion regarding intermediate quality features that con-
strain the match along only one direction. The ori-
entation and aspect ratio of the ellipsoid are taken as
“variance”-like indicators of the one-dimensional slid-
ing constraint provided by aperture-limited features
[1]. Figure 2 depicts the feature matches and con-
straint geometries provided by features in a typical
snapshot overlap region. In addition to these true
feature matches, each snapshot maintains four virtual
features located at the corners of the snapshot’s image
frame, related directly to the whiteboard coordinate
system as estimated by dead-reckoning. These ensure
that some reasonable solution can be found in blank
(featureless) whiteboard regions.

Figure 2: Feature matches. Lines indicate matches
between reference feature patches (centered at circles
in the left image) and corresponding locations in right
image. Each match is characterized by an oriented
rectangle indicating the orientation and translational
constraint along and across the feature’s orientation as
determined by an ellipsoid fit to the correlation sur-
face.

2.3 Transformation Refinement

The perspective transformation between image
points (X,Y) and locations in the whiteboard coor-
dinate system (z,y) is given by,

' tin tia tia X;
Yi | = | tar ta2 tas Yi (1)
;’ t31 139 1 1
1 Xy 112 4 s
131X; + 13255 + 1

a1 X+ t22Y; 4 1o
131X +132Y; + 1

8
[l
2|

Qs

Yi =

Given at least four image points and their (purport-
edly) known locations on the whiteboard, we can ob-
tain a least-squares solution for the transformation pa-
rameters 7' by rearranging these expressions to form a
system of linear equations (see Mundy and Zisserman
[4], pg.482). To accommodate the aperture-limited
constraints available from line-like features we apply

rotation and scaling to each of the features’ entries
in the linear system to weigh the penalty for feature
location errors according to the orientation and “vari-
ance” parameters of the ellipsoidal correlation con-
straint model associated with each correlation match.
In general more than four feature matches are found,
and the overconstrained matrix equation is solved for
the weighted least-squares optimal transformation pa-
rameters using singular value decomposition.

2.4 Collective Refinement of Snapshots’
Transformation Parameters

The most popular strategy for building image mo-
saics, known as the “painting” strategy, is to first
select one snapshot as an anchor which is copied or
transformed into the whiteboard “canvas.” Then suc-
cessive snapshots are placed by aligning with whatever
image features can be matched on the canvas. For ex-
ample, one might start by placing the upper-left snap-
shot by dead-reckoning, then fill in the remainder of
the whiteboard image by tracing a zig-zag path with
the remaining tiles.

This approach is problematical because of accu-
mulation of errors. When snapshot alignments are
constrained by matching features on only one or two
sides, small errors in feature location estimates can
lead to significant distortions on the unconstrained
sides. These distortions accumulate and lead to un-
acceptably distorted and misaligned mosaics.

An alternative strategy made possible by the
feature-based approach is to iteratively refine all snap-
shots’ transformation parameters collectively. For
each feature whose image coordinates are localized in
a pair of overlapping snapshots, take as the estimate
of the whiteboard coordinates (z, y) of this feature the
midpoint of the projections of the feature into white-
board coordinates according to each of the two snap-
shots’ current estimated transform parameters. Thus
at each iteration every snapshot adjusts itself to im-
prove its alignment with its neighbors on all sides.

2.5 Rejection of
Matches

Occasionally the correlation-based feature match-

Incorrect Feature

ing process results in incorrect feature matches. This
happens, for example, through aliasing of image
patches containing closely spaced parallel lines. To
keep mismatching features from disrupting the place-
ment of snapshots in the mosaic, these need to be
detected and eliminated.

Our approach is to examine each feature’s strain en-
ergy, which we take as the weighted squared distance
between the feature’s predicted whiteboard locations
according to each of the overlapping snapshots the fea-

Z_ OYV\LI'QBO“(&

W hie beard

User T derfaw

g@wﬂbr

3 ngérual_\'m'\S

£ Point Coawera at
other whitbeard >

H#2

— PINY Times
Z ?\"‘vl 4 wo copies Ow +he
frivter callel NyTimes <
————s

Figure 3: Scanned whiteboard image. The content written on this whiteboard are instructions-by-example for

using the Diagrammatic User Interface.

ture is found in. The weighting factor is simply the
weighting along and across the feature’s local orienta-
tion as estimated by the oriented ellipsoid fit to the
correlation surface. As relaxation proceeds, most fea-
tures’ strain energies will decrease as their projections
into world coordinates are brought into line with one
another. Mismatching features’ strain energies will re-
main high, however, and we may reject features whose
strain energies fall above a threshold. The threshold
is adjusted downward during the course of the settling
process according to an annealing schedule. Virtually
all features are accepted at first, when all features’
strain energies are high due to errors in the dead reck-
oning estimate. As the snapshots begin to align with
one another, the mismatching features begin to stick
out and are rejected. As mismatching features are re-
jected, correctly matching features can be brought into
even better alignment, and the strain energy threshold
is lowered. Overall, with four threshold levels in the
annealing schedule the entire process typically takes
between 25 and 50 relaxation cycles, with perhaps 2%
of features rejected as erroneous matches.
A completed image mosaic is shown in figure 3.

3 Diagrammatic User Interface

A great deal of activity in computer vision has re-
cently been directed toward Human/Computer Inter-
face applications supported by analysis of faces, hand

and arm gestures, and body motions. Common to
these modalities is an interaction paradigm involving
transient information, for example, the direction of a
gaze, the posture of a hand, or the wave of an arm.
In many of these cases users must learn to execute
prescribed spatio-temporal motor sequences. By con-
trast, a statically available drawing can be created at
the user’s own pace, and edited to their satisfaction.
We have chosen to explore this direction for a user
interface application of computer vision.

The ZombieBoard Diagrammatic User Interface
consists of two main functions. First a real-time Activ-
ity Analysis module filters an image stream to extract
subimages that could possibly represent a diagram-
matic command. Then, a line drawing analysis mod-
ule detects and interprets any visible commands by
extracting and analyzing the spatial pattern of white-
board markings.

We have designed a simple diagrammatic command
language which is depicted explicitly for users in an
“Instructions” page mounted beside the whiteboard.
(The content of these instructions are replicated in
handwritten form in the scanned image of Figure
3.) The Nested Bozx Bution (NBB) figure is the key
shape whose recognition initiates additional analysis
to gather diagrammatic annotations.

l preprocessed video frames

Stage 1.
FSM: Localized
Activity Filter

stable image regions

Y

Stage 2.
Comparison with low-res
whiteboard image model

changed image regions

Y

Line Drawing Analysis /
Diagram Recognition

Figure 4: Stages of activity analysis in the Diagram-
matic User Interface.

3.1 Activity Analysis

When not engaged in collecting zoomed-in snap-
shots of the whiteboard, the camera is zoomed back
to view the entire whiteboard area. Detection and in-
terpretation of diagrammatic commands is performed
using images captured at this relatively low resolu-
tion. For the Activity Analysis module, camera im-
ages are high-pass filtered to remove sensitivity to
lighting changes.

In general the detailed analysis of the markings on
a whiteboard is a compute-expensive job, even when
the system is looking only for a stereotypical pattern
such at the key Nested Box Button. Relatively lit-
tle of the raw input stream is new material drawn on
the whiteboard though; most of the time, most of the
input images contain whiteboard material previously
seen and analyzed, or else people engaged in white-
board work.

We have therefore designed a two-stage Activity
Analysis filter whose function is to pass to the line
drawing analysis module images only of newly modi-
fied persistent image content exemplified by material
newly written on the whiteboard. See Figure 4. The
image is partitioned into local image blocks on which
the Activity Analysis filter works in parallel. Each
block implements a finite state machine. In the first
Activity Analysis stage, image blocks cycle through
the following states:

- The Resting state reflects the absence of any im-

age changes in a block whose image content has
been fully analyzed.

- The Motion state indicates that the image block
is undergoing change. Change is detected by de-
tecting interlacing and by frame differencing, and
may be due to a person moving in front of the
whiteboard and possibly drawing on it.

- The Stable After Motion state indicates that
after an image block had been registered in the
Motion state, it has remained unchanged for a
certain period of time (e.g. 2 seconds). An image
block in this state could contain material newly
drawn on the whiteboard.

In the second Activity Analysis stage, Stable Af-
ter Motion image blocks are compared with a stored
image representing the current model of the stable
content of the scene. If these match, such as occurs
when a person walks in front of the whiteboard with-
out modifying its content, then the image block simply
reverts to the Resting state. If however these are suffi-
ciently different, such as when markings are added to
or erased from the whiteboard, the contents of the cur-
rent scene model are updated with the content of that
image block, and that block is passed (with others) on
to the line drawing analysis module.

As with many computer vision algorithms, the ac-
tual implementation of this module is somewhat more
involved than portrayed in this overview.

3.2 Line Drawing Analysis

Due to unconstrained imaging geometry and
tremendous variability by people in drawing even sim-
ple figures such as the Nested Box Button, the line
drawing analysis module must be extremely toler-
ant to deviations from the prototypical line draw-
ing commands. Most techniques used in engineering
line drawing analysis are unsuitable. Direct template
matching would be out of the question. For simply
detecting NBBs, it is possible that a brute-force neu-
ral network technique such as used to detect faces in
images [5] would succeed, but the computational cost
would be quite high, and this approach would gain
nothing toward further analysis of diagrammatic an-
notations to the basic Nested Box Button “Go” com-
mand.

Instead, the approach we take 1s based on percep-
tual grouping [6, 9]. The incoming line drawing image
is subjected to center-surround filtering, thresholding,
and thinning. Curvilinear lines are collected by trac-
ing, and perceptually salient corners are found by a
multiscale corner detection algorithm (see [7]). The

result is a set of primitive curve element tokens rep-
resenting relatively straight curvilinear contour seg-
ments. Tokens then undergo a series of grouping oper-
ations designed to make explicit spatial structure such
as extended curvilinear arcs, corners, parallels, and
nested corners. See figure 5. For this level of struc-
ture, rules governing spatial configurations of tokens
satisfying corner, parallel, and nested-corner relations
are hand-tuned.

Recognition of NBB figures is done by model-
based matching to a prototype configuration of nested-
corner and parallel features. Means and variances
of the pose parameters (relative location, orientation,
and scale) of these features were refined incrementally
by training on positive exemplar NBBs gathered from
naive users over time by accumulating images that
cruder versions of the program failed to recognize. Ini-
tial hypotheses for NBBs are generated from Nested-
Corner features oriented to possibly form the upper
left corner of an NBB.

Once a Nested-Box-Button is recognized, addi-
tional routines are run to gather annotations of the
command: (1) The NBB is tested to see if is “pressed”
by virtue of possessing curve fragments forming an X
or check mark drawn inside; (2) Curvilinear tokens ex-
tending from one side of the NBB could possibly rep-
resent an arrow, in which case curve fragments case
the arrowhead are tested; (3) Curves extending from
both sides indicate an encircling region, in which case
curve tracing routines are brought into play. The en-
circling command prototcol permits the encircling re-
gion to be noncontinuous, so long as it is reasonably
evident where the boundaries of an enclosing polygon
lie. The curve tracing routine is thus an iterative func-
tion that traces continuous curve sections by following
tokens linked end-to-end. Where a curve terminates, a
“flashlight” algorithm is used by which an expanding
search beam is directed outward to find curve frag-
ments representing its continuation elsewhere on the
whiteboard.

In operation, when running on a Sparc 20 the DUI
normally responds to hand-drawn commands within
5 to 10 seconds. This amount of delay 1s very signif-
icant and understandably annoying to users and we
anticipate improving response time through the use of
faster computing and frame-grabbing hardware.

Acknowledgements

Much credit is due to Dietmar Aust for developing
and implementing the initial DUI Activity Analysis
module.

References

[1] Anandan, P.; [1989]; “A computational framework
and an algorithm for the measurement of visual mo-
tion,” IJC'V 2, 283-310.

[2] Copyboard products;

hittp://www.kintronics.com/plus.him, panaboard. html)
[3] Irani, M., Anandan, P., and Hsu, S.; [1995]; “Mosaic

Based Representations of Video Sequences and Their
Applications,” in Proc. 5th Int. Conf. Computer Vi-
sion, pp. 605-611, June 20-23, Cambridge, MA.

[4] Mundy, J. and Zisserman, A., eds., Geometric In-
variance in Computer Vision, MIT Press, Cambridge,
MA. 1992.

[5] Rawley, H., Baluja, S., and Kanade, T.; [1996]; “Hu-
man Face Detection in Visual Scenes,” in Touretzky,
D., Mozer, M., and Hasselmo, M., eds., Advances in
Neural Information Processing Systems (NIPS 8), pp.

[(?]{gaSutsnld, E.; [1990]; Symbolic Construction of a 2-D
Scale-Space Image. TEFE TPAMI, 12:8, 817-830.

[7] Saund, E.; [1993]; “Identifying Salient Circular Arcs
on Curves.” CVGIP: Image Understanding, 58:3, 327-

337.
[8] Saund, E.; [1998]; “The ZombieBoard Whiteboard

Scanner,” Technical Report, Xerox PARC, (forthcom-
ing).
[9] S)aund, E., and Moran, T.; [1994]; A Perceptually
Supported Sketch Editor. Proc. ACM Symposium
on User Interface and Software Technology(UIST 94),
175-184.
[{1%],184 SmartBoard, Smart Technologies, Inc.
(hitp://www.smarttech.com).
[11]; Softboard, Microfield
(hitp://www.micg.com).
[12] Stafford-Fraser, Q.; [1996]; “BrightBoard: A Video-
Augmented Environment,” Proc. ACM CHI ’96.
[13] Szeliski, R.; [1994]; “Image Mosaicing for Tele-
Reality Applications,” 2nd IEEE Workshop on Appl.
of Computer Vision (WACV ’94), Sarasota, Florida.
[14]; Tegrity, Inc.htip://www.tegrity. com.
[15]; VideoBrush Whiteboard, Videobrush Corporation
(hittp://www.videobrush.com).
[16], Weiser, M., and Brown, J. S.; [1996]; “Design-
ing Calm Technology,” PowerGrid Journal, v. 1.01,
hittp://powergrid.electriciti.com/1.01

Kintronics

Graphics, Inc.

I ————

W“\loﬂ&v ° l,-ﬂ\ gér o [B

et U Todarde T aslivid ong

S

< ?\,‘,!}n«l o Y

[
il or bl L %)

o¥0; Qp @&

G % & &%

Q& O

o]
9

Figure 5: a. 640x480 input image. b. Bounding boxes of curve fragments.

corners. f. Nested Box Buttons

€.

f.

. corners. d. parallels. e. nested

References
[1] Anandan

[2] copyboards

[3] Irani-etal

[4] Mundy and Zisserman

[5] Rawley et al

[6] Saund curvilinear grouping
[7] Saund salient arcs

[8] Saund ZB TR

10] Smartboard
11] Smartboard
12] Stafford-Fraser
Szeliski

14] Tegrity

15

]

]

]

]

]

]

]

[9] Saund and Moran

]

]

]

]

]

] VideoBrush
]

[
[
[
[13
[
[
[

16

Weiser and Brown

