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Identifying Salient Circular Arcs on Curves
Abstract

This paper addresses the problem of identifying perceptually significant segments
on general planar curvilinear contours. Lacking a formal definition for what con-
stitutes perceptual salience, we develop subjective criteria for evaluating candidate
segmentations (such as might be delivered by an algorithm), and formulate corre-
sponding objective measures. An algorithm is presented attempting to meet these
criteria. The segments delivered have the following properties: (1) each segment is
well-approximated by a circular arc, (2) each pair of segments describe different sec-
tions of the contour, and (3) the curve either terminates or changes in orientation
and/or curvature beyond each end of every segment. The result is a description of
the contour at multiple scales in terms of circular arcs that may overlap one another.

1 Introduction

How many distinguished pieces or segments comprise the contour in figure 1?7 Under
different interpretations, this figure can be viewed as a rectangle with four roughly
straight sides, an encircling with eight segments (four sides and four rounded corners),
or a figure with fourteen subsegments as shown in figure 1d. One is entitled to quibble
with these counts on the basis of his own perceptual intuition and judgement, but no
one would decompose this object in terms of the seven arbitrarily chosen parts shown
in figure le. What are the ingredients leading to a natural partitioning of a planar
contour into smaller, perceptually salient pieces?

This question is important to computer vision because vision algorithms typically
operate by combining local measurements, e.g., edge features, into more global inter-
pretations, e.g. object recognition by matching parts of a model object to features
in the image. Effective interpretation of local measurements relies upon the identi-
fication of appropriate sized units in which to describe structure in the visual world
[36]. When local edge or line features on intensity images have been linked into ex-
tended (chain coded) contours, the problem becomes one of breaking the contour into

smaller pieces that are likely to correspond to useful units of later interpretation. For
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Figure 1: (b), (c) and (d) are perceptually satisfying interpretations of (a); (e) is not.
The algorithm presented returns the union of interpretations (b), (c), and (d).
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example, in an industrial setting with rectilinear objects, it is natural to decompose

visual contours into straight line segments (sides) and circles (holes) [3].

Figure 2: Straight line segments approximate curved sections of a contour but do not
describe them as significant units in their own right.

While straight line segments can be used to approximate any contoure.g. [1, 7, 11,
15, 23], they do not lend themselves to the description of curving segments of contour
as units unto themselves, as seen in figure 2. For this reason, workers in geometric
modeling as well as computer vision have turned to more complex parametric models,
including circular arcs [6, 10, 16, 24|, more general conics (5, 27], and splines [12,
14, 19, 25]. In general, the analytic form selected for describing contour segments
should be matched to the domain-dependent processes that generate the contours;
for example, if all images for a given task are oblique views of circular objects, then
elliptical models are appropriate for describing the contours which will be found in
the resulting images. However, for general purpose image analysis tasks in which a
priori knowledge about contour shape is not available, a domain-independent curve
descriptor must be used. The present work explores curve segmentations in terms of
circular arc models, which are in a sense the next most simple form beyond simple



straight line approximations by virtue of adding one degree of freedom (curvature).

Most previous work with curve segmentation, including segmentation in terms
of circular arc approximations, treats the problem as one of finding some optimal
set of “knot” points which decompose the contour into disjoint segments that meet
end to end [1, 7, 10, 12, 15, 19, 30]. This approach is well suited to the problem of
reconstructing the original contour from an information-compressed representation.
However, for purposes of visual interpretation, it can be important to identify very
different but equally perceptually significant segments that may overlap one another
(2, 6, 11, 16, 18]. The right side of figure la can be viewed with equal validity in
terms of a single approximately straight line, or in terms of a number of arcs and
short oblique lines. Either of these decompositions might be important natural units
for performing later visual tasks, for example, answering the questions, “Is this a
square?,” or responding to the command, “Count the wiggles.”

Thus the problem we pose is to identify all segments of a contour that can be
interpreted as a “natural” or “perceptually salient” section to approximate using a
circular arc model. Unfortunately, what it means to be perceptually salient is not
specified by any formal definition. Therefore, section 2 of this paper attempts first
to articulate subjective criteria for what constitutes a perceptually natural contour
segment by examining a number of prototypical situations that occur on curvilinear
contours and appealing to the reader’s own judgements. Objective formulations cor-
responding to these criteria are developed, and these may be applied in evaluating any
algorithm that purports to decompose contours into salient segments. Next, section
3 presents an algorithm attempting to meet these criteria.

Perceptual salience in image curves has been linked with contour curvature by
many investigators. Curvature measures can be used either in ranking the “salience”
of chain-coded segments themselves [6, 16, 33], or to establish breakpoints between
segments (2, §, 13, 17]. Alternatively, low curvature change is reflected directly in
certain parametric models (most notably a circular arc), which have been sought by
filter-based detection directly in the image [9], by Hough techniques [29], by iterative
optimization [22, 37] or by token grouping [5, 21, 26, 31]. Although some techniques




-

distinguish between straight lines and circular arcs returned as output, any such
technique is subsumed by pure circular arc detection because the amount of angular
extent deemed to be a “straight” arc is simply a matter of setting an application-
specific threshold. Detection of salient structure at multiple scales is facilitated in
many approaches by incorporating a smoothing step using kernels of different widths
[35]. By developing a more subtle candidate selection teéhnique and elucidating the
segment saliency criteria, this paper builds upon an overall strategy outlined by Lowe
[16] which consists in assembling a set of candidate model fits to a contour and then

pruning this set on some heuristic basis.

2 Criteria for Perceptually Salient Circular Arc Segments

Let us assume that a contour is specified by a linked list of points equally spaced in
the plane!. Let us also assume that we are provided with means for approximating
with a circular arc the segment between any two points on the contour. In prac-
tice, a standard method for fitting a circle to a set of points [4, 32] works well for
smooth contours and for contours deeper than approximately 70° in angular extent,
but breaks down for noisy shallow arcs as shown in figure 3b. In the latter case a
good approximation can be found by fitting first a straight line, then simultaneously
least-squares adjusting the y’-offset and curvature (z’? coefficient a = 3 under Taylor
expansion of a circle of radius = 1 tangent to the z—axis at the origin) of a parabolic
arc as shown in figure 3c.

For a contour of length N points, the number of possible segments is (1 of length
N) + (2 of length N —1) + ... + (N —1 of length 1) = ﬂ-’;ﬂ The problem at
hand is to select out a relatively small number of these, preferably without examining
each of them explicitly. Because of the combinatorics, at the outset we exclude
from consideration situations such as shown in figure 4 in which a good circular arc

approximation is found by combining discontiguous sections of the contour; detection

1 An algorithm for conversion to this representation from a linked list of four-connected or eight-

connected pixels sampled from a square grid is presented in Appendix A,



Figure 3: Standard circle fitting method [4, 32] on a deep arc (a) and a ncfisy s.hallow
arc (b). (c) Parameters of a parabolic fit to the points in (b). (d) resulting circular
arc fit.



of this kind of visual structure is envisioned as occurring at a later stage at which

information arising from more than one-contour is combined.

Figure 4: A single circular arc fits two discontiguous sections of this curve.

We now proceed to develop criteria useful in assessing the efficacy of any algo-
rithm purporting to identify perceptually salient segments of a curvilinear contour.
These criteria are first stated in subjective terms as motivated by telling prototypi-
cal examples, and are then expressed in terms of objective formulations engineered
to reflect their respective subjective properties. The objective measures are applied
either individually to a single contour segment approximated by a circular arc, or
else pairwise. In general, these criteria permit a set of curve segments to be labeled
with various properties indicating perceptual salience along a number of dimensions.
After describing the properties, we will illustrate their use in evaluating hypothetical

segmentations of an interesting test contour.

2.1 Criterion 1: Goodness of Fit

One obvious property for any contour segment approximated by a parametric model
is that the model should achieve a good fit to the curve. Figure 5 illustrates this
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point with best-fit circular arcs for a number of equal length subsegments of a test
contour. Clearly, segments A and C better correspond to natural subpieces of the

contour than do B or D.

In seeking an objective measure of goodness of fit, at the outset we demand
the property of self-similarity across scales: the goodness of fit measure for a given
segment of a given contour must remain unchanged if the contour and segment are
scaled uniformly in size. One convenient measure of goodness of fit, or fit-quality,
that meets this criterion is the following ratio

fit-quality = é (1)
where [ is the circular arc’s length and e is the maximum nearest distance between
the arc and the curve, as depicted in figure 5b. This measure implements a tradeoff
between two competing objectives found in many previous studies of contour segmen-
tation: (a) maximize the size of parametric models returned while (b) minimizing the
error between the the models and the contour itself. While we happen to judge ex-
pression (1) preferable to, say, the ratio of arc length to averege distance between
contour and arc model, variations in an objective measure of goodness of fit are not
critical as long as they preserve its overall form, including the self-similarity property.
The goodness of fit criterion comports with the notion that for a given curve, equally
valid contour segments, as approximated by circular arcs, may be found to overlie

one another at multiple scales, as shown in figure 5c.

2.2 Criterion 2: Uniqueness

While Criterion 1 applies to curve segments individually, Criterion 2 applies to a set of
segments attempting to label all perceptually salient segments of a given curve. This
criterion states that each member segment of such a set should be unique in the sense
that no other segment in the set should describe esseﬁtia.lly the same piece of contour.
As illustrated in figure 6, circular arc models of segments whose endpoints are very

near one another’s will in general have very similar measures of fit-quality. Intuitively,
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Figure 5. (a) Circular arc fits to equal length segments at different locations on a
curve. Segments A and C are well fit by a circular arc, while B and D are not. (b)
Geometry of a fit-quality measure based on the ratio of circular arc length [ to the
distance e between the arc and the point on the sample curve farthest from the arc.
() A curve with similar structure at two different scales. Our fit-quality measure
returns similar values for similarly shaped segments regardless of scale.
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we are inclined to interpret the presence of but one unified “piece” or “chunk” of the
curve between two roughly specified locations, not several. It is sufficient to label
this section of the curve by returning only one of these segments’ circular arc fit.
From the standpoint of computational efficiency, some form of uniqueness criterion is
necessary because, were the distance between sample points on the curve to decrease,
the resulting multitude of essentially redundant segments would overwhelm any later

processes.

Although the uniqueness criterion applies with respect to a set of curve segments,
it is possible to formulate this condition in terms of a pairwise measure on the degree to
which the portion of a curve described by one segment is already sufficiently described
by another segment. In figure 6a, it is apparent that the circular arc fit to the segment
P;-P; is completely subsumed by the circular arc fit to segment P;-P,. The pairwise
measure is cast in these terms, assigning a number indicating the degree to which some
curve segment, SEGMENT-A, modeled by circular arc, ARC-A, is subsumed by another
segment, SEGMENT-B, modeled by circular arc, ARC-B. Figures 6b and 6c indicate
that two factors must enter into this subsumedness measure. The first, an overlap
factor, takes into account the degree to which SEGMENT-B covers the same section of
the curve as does SEGMENT-A. If there is no overlap between the two segments, then
SEGMENT-A cannot be at all subsumed by SEGMENT-B, and conversely, if SEGMENT-
A is completely covered then it could potentially be interpreted as totally subsumed
by SEGMENT-B. The overlap factor plays against a second, fit-quality factor. In 6c,
SEGMENT-A is not subsumed by SEGMENT-B because SEGMENT-A fits the section of
the curve between its endpoints much more closely than does SEGMENT-B. Even
though SEGMENT-A is completely overlapped by SEGMENT-B, it provides information
about a distinct and significant section of the curve that SEGMENT-B does not.

These considerations suggest that a numeric measure of subsumedness may be
expressed as a product relation between a term expressing degree of overlap between

two segments and a term expressing the relative fit-quality; both factors must be
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segment  fit-quality
P1— P3 79.08
Pl— P4 98.4
. PL—PS 95.8
a s P2— P3 77.6
s P2--P4 - 91.9
. P2—P5 B1.9

Figure 6: (a) Six curve segments describing essentially the same section of contour
have very similar measures of fit-quality. (b) A segment can be subsumed by another
to the degree that its span is completely overlapped by it. (c) A segment is not
subsumed by another segment, even if completely overlapped, if its fit quality is

substantially greater.
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present for the degree of subsumedness to be considered high:

is-subsumed-by(SEGMENT-A,SEGMENT-B) =

(1, overlap-fraction(sEG%I_-:‘.:T-A.SEGMENT—B)—-n ) (2)

relative-fit-quality(SEGMENT-A SEGMENT-B)-, )
1.0-

max(0, min

x max(0, (mjin1,

where overlap-fraction(SEGMENT-A,SEGMENT-B) is simply the proportion of the orig-
inal curve within SEGMENT-A that is also within SEGMENT-B (a number between 0
and 1), and

relative-fit-quality(SEGMENT-A, SEGMENT-B) =
arc-lengthk ARC-A)

fit-quality(SEGMENT-B)x arc-lengtR(ARC-B) (3)
fit-quality(SEGMENT-A) '

The quotients in expression (2) implement linear interpolations between points at
which it is specified that each term supports total subsumedness of SEGMENT-A by
SEGMENT-B (is-subsumed-by = 1) or no subsumedness (is-subsumed-by = 0). The
parameters 7; and v, control, respectively, the degree of overlap considered negligi-
ble, and the degree of fit-quality required to consider some segment which is totally
overlapped, significant nonetheless. (Values for free parameters v used in the current
implementation are listed in Appendix B.) Lowe [16] mentions an analogous mecha-
nism that addresses the uniqueness consideration but treats overlap categorically and

does not trade this factor off against fit-quality.

Figure 7 demonstrates our is-subsumed-by measure for a number of pairs of curve
segments. Note that this measure is not commutative: in general is-subsumed-
by(SEGMENT-A, SEGMENT-B) # is-subsumed-by(SEGMENT-B, SEGMENT-A). Given
an ensemble of segments, any segment can be compared against nearby segments to
determine the degree to which it is subsumed by another, and may therefore be con-
sidered superfluous. Since this is a continuous-valued measure, different applications
may tailor the use of the is-subsumed-by measure to particular ends, e.g. by choosing

a threshold on when to remove segments from a set as discussed in Section 3.3.
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Figure 7: Examples of the subsumed-by measure.
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2.3 Criterion'3: End Abruptness

A third criterion governing the apparent perceptual significance of a curve segment
as modeled by a circular arc is motivated in figure 8. This factor takes account of
the locus of the curve extending beyond the segment’s ends. Roughly speaking, if the
curve proceeds in a continuation of the circular arc fit to the segment in question, then
that segment is seen as less salient than when the curve changes abruptly in direction
or curvature immediately beyond the segment’s bounds. This end-abruptness factor
applies independently to each of the two ends of a curve segment. The End-abruptness
factor is necessarily high if the segment boundary occurs at a termination of the curve,

as shown in figure 8c.

Based on these considerations, we may formulate an expression for overall-end-
abruptness as the minimum of the independent measures of end-abruptness at each
of the ends of a segment, where end-abruptness = 0 indicates perfect continuation of
the arc model and is considered not at all salient, and end-abruptness = 1 indicates
severe change in direction and/or curvature and is considered maximally salient. In
other words, smooth continuation of the circular arc model beyond either end of a
curve segment is sufficient to veto that segment’s overall salience.

For the measure of end-abruptness at one end of a segment (not coinciding with

a curve termination), an initial heuristic formulation consists in tracing points (z,y)
h= segmenzt-length proves satisfac-

along the curve for some extension distance, h, (
tory) beyond the end of the segment, recording the maximum, end-abruptnesscmaz,
of the expression (see figure 9a):

max(0, (| y' | —e))
et ztans ) (4)

end-abruptness,(z,y) = max(0, min(1,

where e is the maximum deviation between the curve segment and the circular arc
model (as in (1)). In practice it is advantageous for this purpose to employ an arc
fit not to the entire segment but to the half of the curve segment containing this
end. Expression (4) implements a linear interpolation between end-abruptness = 0

occurring when curve point (z,y) on the extension of the curve lies on the curve
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Figure 8: The perceptual salience of a segment depends not only on the properties of
the curve within that segment but also on the locus of the curve beyond the segment’s

endpoints.
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segment’s circular arc model, and end-abruptness = 1.0 occurring when the curve
veers off sharply to the left or right of the arc. The term e in this expression is
introduced to permit more tolerance in deviating from a low fit-quality circular arc

approximation than a perfectly fitting model.

The geometric simplicity of this formulation notwithstanding, empirical observa-
tion of many curves indicates that an additional factor mhst be taken into account
in developing an expression adequately capturing the intent of end-abruptness. Fig-
ure 9b shows that rather shallow arcing curve segments appear to merge smoothly,
without large apparent change in direction or curvature, with certain appropriately
oriented nearly straight (very low curvature) curve extensions. We model this effect
by introducing a second auxiliary term (see figure 9c):

!

v
e+ z'tan w

end-abruptness,(z,y) = min(1l,(v+ (1.0 — v) | N (5)

where vand wrepresent the center value and angular width, respectively, of a “trough”
centered on the linear extension of the circular arc in the direction indicated in the

figure.

7 ifw<ys
v = ] (6)
1.0 otherwise

vs is set so that the auxiliary term only takes effect for small w. As with end-
abruptness.maz, the value end-abruptness,mqr, is taken as the maximum of end-
abruptness, over all points (z,y) on the curve out to distance, k, beyond the end

of the segment. Finally,
end-abruptness = min(end-abruptness, ., end-abruptness, ,..). .  (7)

Figure 10 illustrates end-abruptness measures for a number of representative curves/curve-
segments by displaying the points where end-abruptness. oz and end-abrupiness, maz
occur. As with the fit-quality salience criterion, end-abruptness is a unary property
on individual curve segments that can be used, for example, to rank curve segments

in order of significance along this dimension.
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Figure 9: (a) Geometry of the basic end-abruptness measure, which assess the rapidity
with which the sampled contour (open circles) deviates from a circular arc model
beyond the end of a fit segment. (b) Under some conditions a curve can deviate
strongly from continuation of a segment’s circular arc fit (segment A) without that
segment appearing to end abruptly. (c) An auxiliary measurement accounts for this
effect by estimating the curve’s deviation from a straight line (centerline notation)
with orientation as shown.
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Figure 10: Numbers indicate end-abruptness measure at each end of the segment
shown. End-abruptness ranges from 0 (not at all abrupt) to 1.0 (very abrupt). Circles
indicate points on the curve where maximum end-abruptness occurs.
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2.4 Usage and Examples

It is important to consider the above mathematical expressions in an appropriate
context. These are not strict derivations, nor are they fits to sampled data, but they
are merely attempts to engineer formal counterparts to subjective criteria judged
important to assessing three dimensions of perceptual salience of curve segments. The
effectiveness of these devices must be assessed izltimately by the builders of systems
relying on the identification of significant segmentations of planar curves found in
images. It lies beyond the scope of this paper to delve into issues of shape recognition
or other particular applications using these segments, so for the time being it must
be left for the reader to judge the degree to which the formal measures correspond
with his or her perceptual intuition. to

In order to see how these three criteria may be deployed, consider figure 11. Here,
a test curve is presented along with four sets of segments (displayed as their associated
circular arc fits) that might be selected to describe the curve. For each set, the figure
indicates values of fit-quality and end-abruptness independently for each segment,
plus degree of is-subsumed-by factor for pairs of overlapping segments. Segments in
figure 11b were chosen such that each segment has high fit-quality and large end-
abruptness, and so that no segment significantly subsumes any other. Segments in
figure 11c may be viewed as slightly sloppy versions of the segments in 11b; fit-quality
or end-abruptness are degraded, but pairwise is-subsumed-by factors are relatively
unaffected. Figure 11d can be seen as an overly redundant representation of the
original curve; extra segments are present that display strong is-subsumed-by factors
with one another. Finally 1le is a too-sparse depiction of the curve; certain sections
of the curve are not identified by circular arcs that, if they were, would have high
degree of fit-quality and end-abruptness and low subsumedness with other segments.

A formal test of a candidate set of curve-segments thus amounts to using expres-
sions (1), (2), and (7), to assess where there are redundant segments, where “good”
segments are missing, and where segments are present but could be better positioned.
None of these is an all-or-none decision; on the contrary, by supplying continuous val-
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Figure 11: (a) Test curve from [8]. (b) through (e) Sets of curve segments (in-
dicated by their circular arc fits) that could be selected to describe the curve.
Tables present fit-quality and end-abruptness measures for each segment, plus
the name and subsumed-by measure for the most strongly subsuming other
segment. Fit-quality < ~15.0 may be considered poor, and fit-quality > ~40.0
is good. end-abruptness = 1.0 is high, and end-abruptness < ~ .5 is low.
subsumed-by measure < ~ .5 indicates low redundancy, subsumed-by measure
> ~ .8 indicates high redundancy. Segments are presented in order proceed-
ing clockwise around the curve. (c), (d), and (e) are, respectively, sloppy,
redundant, and overly sparse versions of the segments in (b).
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ued measures of their respective properties they reflect the ambiguity resultant from
applying idealized models. Even so, they serve as effective guidelines for developing
algorithms intended to pick out segments of curves that stand out clearly to any

human observer yet to which machines have heretofore been oblivious.

3 Algorithm

A computer algorithm attempting to return a set of curve segments with high fit-
quality, high end-abruptness, and low pairwise is-subsumed-by factors must be de-
signed to optimize not only quality of results, but also computational efficiency in
time and memory. The algorithm presented here reflects this tradeoff by first pres-
electing, then further pruning, a set of candidate segments that is typically several
times larger than the number of segments finally returned, but very much smaller than
the E_U:_ﬂl segments potentially available to check. The basic procedure is outlined

here, elaboration follows below:

1. Derive smoothed and subsampled versions of the original curve, forming repre-

sentations suited to analysis at all spatial scales.

2. Discover candidate segments by fitting straight lines to the orientation vs. arc-
length representations at all scales; calculate fit-quality parameter for each of

the candidate segments.

3. Compare overlapping candidate segments pairwise and remove segments in or-
der of the degree to which they are subsumed by another candidate, up to a
chosen threshold degree of subsumedness. '

4. Remove remaining segments falling below threshold values of fit-quality and/or
end-abruptness. Return all surviving candidates.

Two crucial considerations guide the design of this algorithm. First, in order detect
circular arcs of all lengths and radii in curves of any magnification, the algorithm must
prefer no spatial scale, but instead operate uniformly across all scales. Thus motivates
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the scale-space [35] computation of step 1. Second, as much work as possible is done
in the orientation vs. arc-length representation. Since a circular arc in the plane
corresponds to a straight line in this representation, the algorithm can search for a
particularly simple type of structure in this signal; furthermore, it is computationally
much less work to deal with a single one-dimensional array than the geometry of

curves and circular arcs in two dimensions.

3.1 Step 1: Smooth and Subsample the Curve

After preprocessing by the algorithm in Appendix A to remove any city block pixel
sampling effects, the original curve is smoothed with a truncated Gaussian kernel
(¢ = 76). We employ Lowe’s [17] methods for performing smoothing out to the end of
a curve and for correcting for curve shrinkage, although straight Gaussian smoothing
in lieu of the latter seems not to impact the results a great deal. The result is labeled
as the Scale 0 signal and stored for later use, and is then subsampled by a factor of
two to yield the input for another Gaussian smoothing pass (identical kernel as above)
which in turn yields a Scale 1 signal. Subsampling and smoothing steps alternate until
the number of samples remaining in the signal is less than the kernel width of the
truncated Gaussian. This procedure results in a scale-space representing the original
curve at different resolutions. The tangent direction between successive points is
computed to yield orientation vs. arc-length #-S representations at all scales. See
figure 12.

The subsampling step serves two functions. First, it greatly reduces processing
load compared to applying increasingly large Gaussians to the original signal (for an
input curve of 1000 points the entire procedure takes only about 3 times as long as
the first Gaussian smoothing pass). Second, it serves to normalize first difference in
orientation (curvature) so that different magnifications of the same contour give rise
to virtually identical representations that vary only by a shift along the scale index
of the contents of the orientation vs. arc-length arrays. This allows the remaining

processing steps to operate essentially uniformly across all scales.
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Figure 12: (a) Test curve, plus smoothed and subsampled versions of this curve
at two coarser scales. (b) 8-S representation of the test curve across scales.
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3.2

Step 2: Fit Straight Lines in Orientation vs. Arc Length

For every scale orientation vs. arc-length array, a two-step process is used to

identify locally straight lines which will correspond to circular arcs in the original

curve. These are (see figure 13):

2a. Perform split-and-merge segmentation [23] to locate initial candidates for end-

2b.

points of straight lines in -5 space as first suggested by Grimson [10]. This is
done with a very tight error tolerance € = 47 so as to ensure that every conceiv-
able line break point is found. These segments are combined (union operation)
with a second set of segments delivered by next performing just the merge step
of the split-and-merge algorithm, this time backing off to a somewhat looser
tolerance € = 3 so as to detect longer, more imperfectly straight lines. Each
resulting segment is adjusted by least-squares to optimally fit its section of the
6-S space curve. A final merge step detects pairs of segments forming a shallow
upright or inverted “v,” corresponding to inflections in the 2D input curve.

For each line segment in 6-S space, a segment-growing procedure is performed.
First, an estimate is made of the degree of match or fit between between the
straight line segment and the corresponding segment of the 8-S signal. From
this match estimate is derived an adaptive threshold, t. The segment is ten-
tatively extended one point to the left, and one point to the right, and, after
updating the least-squares fit including these tentative extensions, the match
estimates are recomputed. If both the left-extended and right-extended match
estimates exceed the threshold ¢, then the segment-growing procedure termi-
nates. Otherwise, the segment is extended permanently in the direction of best
match estimate, and the procedure repeats. Finally, all segments longer than a
threshold (24¢) number of (subsampled) points are returned.

The result is a set of line segments in 8-S space, each of which delimits a candidate

segment in the input curve, and each of which is computed so as to correspond to

an approximately circular arc in this curve. Because this procedure is performed
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Figure 13: (a) Line segments in 6-S space after split-and-merge segmentation (b)
Least-squares fit to 8-S curve for one of these segments, and corresponding circular
arc on the 2D test curve. (c) This segment after segment-growing.
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independently at all scales of 8-S, a given approximately circular arc section of an
input curve will quite often give rise to several more or less equivalent candidate
segments. For rather precise circular arcs, the segments found by finer scales of
analysis will typically deliver the best estimates for the endpoints of the segments,
while roughly formed arcs will be detected only at the larger scales.

It is worth considering why it is necessary to perform candidate segment detection
on the 8-S spaces at different resolutions of the input curve in scale-space, and not,
say, simply to smooth the finest scale §-S representation with different size kernels.
Figure 14a shows that spatially small blips in a curve can nonetheless give rise to
large bumps in 8-S space that obscure true large scale spatial events such as gradual
changes in curvature. A different shortcut might consist in attempting to bypass the
split-and-merge step by detecting sudden changes in orientation or curvature directly
in 4-S space. While this strategy cannot be completely ruled out, we point out
the difficulty it faces in detecting segments such as figure 14b, for which one end
is delimited by change in curvature at a coarse scale while the other end is defined
by a change in orientation at a fine scale which is absent in the coarse scale signal.
Both the smooth and noisy versions of this type of segment score highly on all three
perceptual salience criteria developed in Section 1, but to identify both is beyond the

capacity of all previously reported algorithms we are aware of.

3.3 Step 3: Prune Redundant Segments

At this stage all candidate segments found through analysis of §-S space are trans-
formed into circular arc fits of the original input curve. Curve fitting is performed as
as discussed in section 2, and the fit-quality parameter is measured. In practice, be-
cause of pixel quantization effects in images it is not uncommon to encounter perfectly
straight curve segments. To avoid complications due to the corresponding interpreta-
tion that these have infinite fit-quality, we compute this parameter using the following
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Figure 14: (a) Curve for which a spatially small feature gives rise to a large feature in
6-S space. (b) Curves containing salient segments (indicated by arrows) bounded by
a purely large scale feature (smooth join) on one end and a purely small scale feature
(ramp step) on the other. (c) Segments returned by the algorithm. For the wiggly
curve, circular arcs representing small scale and large scale segments are displayed

separately for clarity.
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modification of expression (1):

l
| max(re) (8)
Next, overlapping segments are detected after sorting by location from one end of
the input curve, for efficiency. For each pair of overlapping segments, is-subsumed-by
factors are computed as described in Section 2.2. All segments are removed that are
completely subsumed by another segment (is-subsumed-by factor = 1). Remaining
segments are rank-ordered by the maximum amount they are subsumed by some
other segment. Segments are removed in order of decreasing max(is-subsumed-by)
factor, taking care to note that any segment removed from consideration can no longer
subsume any other segment still under consideration. Segment removal proceeds until
some threshold 710 on subsumedness is reached, at which point no remaining segment
is subsumed by any other to a degree greater than this threshold.

fit-quality =

3.4 Step 4: Remove Poor Quality Segments

End-abruptness is measured as described in Section 2.3, with one minor modification.
In executing expressions (4) and (5), we sample points (z,y) not from the input curve,
but instead from the smoothed version of the input curve in which the segment was
detected. This modification removes artifacts in the estimate of end-abruptness that
arise on very wiggly or noisy curves. The smoothed input curve also supports com-
putation of a smoothed-fit-quality parameter, analogous to the previously described
fit-quality measure, that is useful later in assessing the degree to which the segment’s
gross shape fits a circular arc independent of small scale wiggles or noise it may pos-
sess. Finally, a coarse thresholding step removes curve segments whose fit-quality or

end-abruptiness falls below respective thresholds 43; and 713.

4 Results

Because curve segments possess graded values of fit-quality, end-abruptness, and
subsumed-by factors, the algorithm is liberal in returning nearly all conceivably salient
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segments. Alternate ways are possible of further refining these. For example, in fig-
ure 15 the full cadre of 130 even minimally salient curve segments returned by the
algorithm are reduced to the 42 shown in 15b and 15¢ by applying a threshold on a

composite-salience measure:

composite-salience = smoothed-fit-quality x end-abruptness (9)

It is characteristic of heuristic algorithms such as this one that results are affected
by parameters whose settings are adjusted in a seat-of-the-pants fashion. What seems
to work well on one image may yield suboptimal results on another. Furthermore,
because of the intuitive nature of “perceptual salience,” judgment of the quality of
results may differ from person to person. All results presented in the paper employ
the same fixed internal parameter settings for the algorithm. Figures 16 through 20
are presented for the reader to judge the degree to which the results match his or her

perceptual intuition.

Failures of the algorithm can be of two types. First, the algorithm can fail to
identify curve segments that would be considered qualified with regard to fit-quality,
end-adjustment, and subsumed-by measures. This occurs for example at the location
indicated by the arrow in figure 16. In this case the algorithm for finding candidate
segments by locating straight lines in orientation space delivers the segment shown
in figure 16¢c, whose endpoints extend not quite far enough to bring fit-quality above
the threshold which was set on the basis of testing the algorithm on other images.
One could change the threshold or further tweak the segment-growing module of the
algorithm, but it is impossible to ensure that other failures will not occur in other
marginal situations.

This type of mistake can be considered a failure in implementation of a “theory”
of perceptual salience reflected in the three criteria of section 2. The second type
of failure is due to weakness of this theory itself; cases may be found where the fit-
quality, end-abruptness and subsumed-by measures do not correspond with perceptual
intuition. Such a situation occurs in figure 17, which illustrates the fact that some-

times curve segments are made salient due to their “texture,” which is not accounted
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Figure 15: (a) Circular arcs depicting the 130 curve segments returned by the
algorithm on the test shape of figure 12. (b) and (c) Arcs depicting smaller and
larger scale segments, respectively, resulting from thresholding the segments
in (a) at a level of 30.0 in composite-salience (see text).
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Figure 16: (a) Test curve used by Teh and Chin (see figure 6 of [30]). (b) Circular arcs
depicting curve segments with end-ebruptness > .5 returned by the present algorithm.
Small, medium, and large scale segments are shown separately to highlight significant
structure found at different scales. (c) Magnified section of the curve where the
algorithm rejected the potentially salient segment shown because its fit-quality fell
below a previously set threshold.
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for by our criteria. Perhaps another criterion could be added to account for this

phenomenon, but we do not attempt to do so here.

Figure 17: The three criteria of Section 2 do not account for segments made percep-
tually salient due to their contour texture properties.

Figure 18 illustrates the algorithm’s self-similarity with respect to scale; arcs are
found in comparable places on ellipses of all sizes. Finally, figures 19 and 20 show
curve segments found on edge maps derived from real images.

The algorithm’s computational requirements are dominated by the effort required
to fit circular arcs to candidate curve segments and compute their fit-quality and end-
abruptness measures. Total compute time is 70 seconds for the test curve of figure 12
(1270 image curve points) on a mid-1980’s era workstation running Lisp.
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Figure 18: (a) “Ellipses” test image due to A. Etemadi. (b) Circular arcs de-
l.salience > 15.0 returned by the algorithm.

Note similarity of results for ellipses of different sizes.

picting curve segments with overal
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5 Appendix A: Curve Preprocessing Algorithm

This algorithm converts a linked list of points spaced unevenly along a plane curveinto
a list of evenly spaced points approximating the original curve. This preprocessing
step removes city block pixel quantization effects of four-connected or eight-connected

curves prior to working with the 8-S representation. See figure 21.

initialize output-curve(0) « input-curve(0) ;first point of output curve

initialize ¢ «— 1 ;input curve index
initialize 0 « 0 soutput curve index
initialize d «— euclidian-distance(output-curve(o),input-curve(i))
loop until (¢ > curve-length) doing
loop until ((d > m13) or (i > curve-length)) doing
ie—(i4+1)
d «— euclidian-distance(output-curve(o), input-curve(i))
endloop
loop until (d < 1.0) doing
output-curve(o+1) «— [unit-step from output-curve(o) in direction from
output-curve(o) to input-curve(i)]
d — euclidian-distance(output-curve(o+1), input-curve(i))
00+l
endloop

endloop
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Figure 21: X’s: sample points on a test curve. Open circles: points returned by the
curve preprocessing algorithm.
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6 Appendix B: Values of Free Parameters

The following are values of the free parameters of the perceptual salience criteria and

curve segment identification algorithm used in the current implementation.

parameter value use
T 5 subsumed-by measure
Y2 .1 subsumed-by measure
73 30° end-abruptness measure
Y4 2 end-abruptness measure
s 20° end-abruptness measure
76 2 Gaussian smoothing kernel width
77 .15 candidate segment generation
s 4 candidate segment generation
~Yo .25 fit-quality measure
M0 .6 subsumed-by threshold for

pruning candidate segments
M1 15.0 fit-quality threshold for

pruning candidate segments
T2 1 end-abruptness threshold for

pruning candidate segments

M3 1.3 ~ curve preprocessing
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