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Abstract

This paper offers computational theory and an algo-
rithmic framework for perceptual organization of im-
age contours arising from static occluding surfaces of
constant lightness. We articulate constraints and bi-
ases underlying the inference of such physical events
as visible surface overlap and invisible (modal and
amodal) surface boundaries, from ambiguous visual
evidence including wvisible conitrast edges and L-type
and T-type junctions. For any given scene, an en-
ergy or cost function is constructed over interpre-
tation labels for nodes of a sparse graph, or belief
net. Annealing-style optimization permits local cues
to propagate smoothly to give rise to a global solution.
We demonstrate that this approach leads to correct in-
terpretations (in the sense of agreeing with human per-
cepis) of popular simple “Colorforms” figures known
to induce illusory contours, as well as more difficult
figures where interpretations acknowledging accidental
alignment are preferred.

1 Introduction

A longstanding problem in computational vision is
to sort out the various contrast edges found in images
to infer overlap and depth relations among the sur-
faces that generated them. Often the physical config-
uration of objects is underconstrained by the limited
information available in a single view, requiring addi-
tional constraints or assumptions to be brought into
play.

A classic figure illustrating this phenomenon is the
“Kanizsa Triangle” [5](Figure 1). Several physically
consistent interpretations of the image are possible.
But the preferred human percept rejects the perfectly
plausible and simple interpretation that all of the
black figures are isolated objects (1b), in favor of the
apparition of a large white occluding triangle (inter-
pretation lc, and alternatively, 1d). This is presum-
ably due to the visual system’s refusal to accept that
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Figure 1: a. Kanizsa Triangle b. Plausible but non-
preferred interpretation. c. Preferred interpretation.
d. Alternate preferred interpretation.

certain contour alignments could have arisen by “acci-
dent,” and that, therefore, an occluding triangle is the
most likely remaining explanation. Note however that
interpretations 1c and 1d require the postulation of a
competing accident of a different kind, namely, that a
background plane and the foreground triangle are co-
incidentally the same lightness, which accounts for the
lack of a contrast edge where they overlap.! Through

1In fact, the implausibility of this accident may underlie
the apparent lightness edges induced at the triangle’s bound-



this and similar illustrations the Gestalt psychologists
demonstrated that a complex and subtle interplay of
biases and assumptions must underlie perception of
seemingly simple scenes [6]. We seek formal accounts
for these processes.

The pioneering computational study of perceptual
organization in the “Colorforms” domain occurred
with Williams’ [11, 12] delineation of a mapping be-
tween sparse, observable, image level events such as
contrast edges and junctions, and a set of interpreta-
tion labels for physical events which might or might
not give rise to visible evidence. Of particular inter-
est is the inference of unobserved surface boundaries
known as modal and amodal completion edges, as dis-
cussed below. Williams’ formulation reflected his goal
of obtaining a globally consistent map of relative sur-
face depths: a scene gives rise to an integer linear pro-
gramming problem in which continuous-valued figural
biases reflect Gestalt preferences for closure and good
continuation within a strict physical feasibility space
circumscribing the set of possible interpretations for
that scene. This model unfortunately foregoes purely
local use of local evidence, as evidenced by its prohi-
bition of globally inconsistent but perceptually phe-
nomenal interpretations of scenes such as Figure 2.

More recently, Geiger et al. [3] adopted a
set of physical interpretations for L-junctions more
closely resembling that recognized by psychophysicists
[1], but formulated in a relaxation labeling scheme
whereby interpretation labels are diffused in a fine-
grain two-dimensional field while pinned at the rel-
atively few locations containing contrast data in the
input image.

The present work offers a new formulation for the
perceptual organization of occluding contours. In Sec-
tion 2, computational theory 1s developed that in-

ary where none exists in the image data.

Figure 2: Strong local figure/ground pressures can
prohibit globally consistent figure/ground assignments
for all contour edges.

corporates a richer ontology of image junction inter-
pretations than previously has been entertained, and
that elucidates tradeoffs among competing perceptual
baises. Section 3 proposes an algorithmic framework
based on a token-based representation that is parsi-
monious and efficient in the declaration of equivalence
classes of image events. Token labels reflecting the
physical interpretation of a given scene are assigned
through annealing-style optimization. The formula-
tion permits information from spatially localized cues
to be used purely locally as well as to propagate glob-
ally.

2 Computational Theory for Occlud-
ing Opaque Surfaces

A computational theory for the perceptual organi-
zation of occluding surfaces must address both what
can happen in the mapping from the physical world
to images, and assumptions about what {ends to hap-
pen, the latter providing justification for interpreta-
tion biases. Falling outside the scope of this paper,
but fully subject to extensions, are theoretical consid-
eration of painted or shaded surfaces; thin-lines; mov-
ing surfaces; transparent surfaces; and lighting effects
such as shadows.

2.1 Junction Label Catalog

We introduce in Figure 3 a catalog of possible phys-
ical interpretations of visible contrast edges and junc-
tions resulting from local surface shape and occlu-
sion. This catalog enumerates interpretation labels
for three types of image event, the boundary contour,
T-junction, and L-junction. The most elemental prim-
itive is the visible contrast edge, or boundary contour,
which arises from the overlap of two surfaces of dif-
ferent lightness. This event can take one of two label
values indicating which of the surfaces is in front, as
indicated by the direction of a wedge arrow in the fig-
ure.

The junction catalog articulates the rich ambiguity
inherent in local image measurements. For example, a
visible L-junction can arise from a convex or concave
physical corner (L1 and L2), or, as a “degenerate”
T-junction if surfaces coincidentally share the same
lightness (L3-L6). Such ambiguities can be resolved
only by marshalling more global evidence under the
guidance of interpretational biases.

The invisible contour boundary generated when one
surface overlaps another of the same lightness 1s known
as a modal completion edge.? An amodal completion,

21t is important to distinguish the common usage of this term
as referring to phenomenal appearances generated by certain
stimuli, from our definition of a modal completion edge as the
formal assertion of surface overlap sans contrast edge—whether
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Figure 3: Catalog of interpretation

labels for BOUNDARY-CONTOURS, T-JUNCTIONS, and
L-JUNCTIONS. Heavy lines denote contrast edges, solid
thin lines denote modal completion contours, dashed
lines denote occluded contours. Arrows and shading
indicate direction of surface overlap: tip of arrow in-
dicates occluded surface.

or occluded contour occurs when a surface boundary
is occluded by another surface, as indicated by dashed
lines.
2.2 Figural Biases

The Kanizsa Triangle demonstrates that modal
completion edges are readily inferred in the context
of conspicuously aligning visible contrast edges. Al-
though the assertion of a modal completion interpre-
tation requires postulation of a nongeneric or “acci-
dental” coincidence in lightness of distinct and over-
lapping surfaces, this explanation allows the alignment
to be explained by a single boundary contour instead
of by the “accidental” alignment of contours from in-
dependent objects.® Thus, we require means to ex-
press tradeoffs among interpretational biases or pref-

it is perceived in some fashion or not. The present work makes
no attempt to predict the vividness with which illusory contours
will be experienced by human observers, nor their perceived
shapes.

3 A more refined treatment of the nature of generic versus
nongeneric events is presented in [8], from which the present
paper is condensed.

erences drawing from underlying assumptions about
what types of physical events are more or less likely
to occur.

This may be accomplished though the mechanism
of an energy or cost function that assigns penalties for
junctions adopting certain labels, depending on the
severity of any nongeneric inferences these labels in-
duce in the context of the particular image geome-
try. In implementation, the terms contributing to en-
ergy cost are all simple mathematical expressions en-
gineered to take particular functional forms justified
on the basis of commonsense evaluations of sample
configurations and the human visual system’s behav-
ior on simple stimuli. See [8] for details. What is most
important for the present purposes is to get their qual-
itative behavior right, to reflect the following figural
biases, illustrated in Figure 4:

e Generic Positioning. An energy cost E,, (aa
: accidental alignment) is imposed whenever two
edges align with one another but their associated
junction labels interpret them as arising from un-
related contours. F,, reaches a maximum for pu-
tatively unrelated edges that abut and align per-
fectly, and decreases with distance and misalign-
ment.

¢ Contour Smoothness. An energy cost F.s (cs
:: contour smoothness) is imposed whenever two
distinct contours are hypothesized by their asso-
ciated junction labels to belong to a common con-
tour, blocked from view by occlusion. The energy
cost decreases with nearness and smooth contin-
uation of the two contours, and increases as the
gap between them increases or their hypothesized
invisible join becomes more contorted.

e Generic Surface Color. An energy cost Fo,.
(me :: modal completion) is incurred for the as-
sertion of junction labels proposing occlusion by a
surface that happens to be the same color as the
occluded surface. As with contour smoothness,
this cost is at a minimum when the hypothesized
modal completion edge is very short and smooth,
and increases with its length and contortion.

e Figural Convexity. An energy cost E¢. (fc ::
figural convezity) is incurred for hypothesizing lo-
cally concave occluding surfaces. Curving bound-
ary contours assigned overlap labels correspond-
ing to concave occlusion boundaries, or partial
holes, are assigned cost according to the angular
extent. Likewise, concave corners, corresponding
to Type L2 L-junctions, incur energy cost accord-
ing to their internal angle.
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Figure 4: Schematic illustration of quantitative figural
biases.

e Neighbor Consistency. An energy cost F,.
(ne :: neighbor consistency) expresses a penalty
incurred for every instance that a junction in-
terpretation label conflicts with that of the con-
stituent boundary contours that comprise it. This
amounts to a firm but not unyielding bias for fig-
ural consistency, that is, that foreground objects
do not arbitrarily flip occlusion direction to be-
come background.

Any assignment of interpretation labels to a figure
gives rise to a global interpretation energy cost simply
by summing the energy costs of all boundary-contour
and junction labels. Figure 5 illustrates optimal and
suboptimal labelings of the Kanizsa triangle. Our fig-
ural biases are chosen so that optimal energy costs
will correspond with perceptual interpretations pre-
ferred by humans. Note for example in Figure 5a that
modal completion contours are asserted to enclose the
central white triangle, while amodal continuation con-
tours complete the occluded black triangle and the oc-
cluded black circles. But Figure 5b shows that another
interpretation that is fairly easy for humans to see—
the circles as holes revealing a black background—pays
only a small energy penalty for figural nonconvexity,
while Figure bc shows that the strongly nonpreferred
interpretation—isolated objects with no occlusion—
pays a very high penalty for accidental edge align-
ments. In all cases presented in the paper the optimal

labeling is attained by the algorithm of the next sec-
tion.

3 Search Over Labelings of a Junction
Graph

This machinery may be instantiated for real and
synthetic Colorformsscenes through an algorithm pro-
ceeding in two phases, a problem setup phase and a
solution phase.

Input data consists of chain-coded contours such
as found by edge detection and curve tracing pro-
cesses, and annotated with the colors of the surfaces
on each side. Straightforward techniques are used to
detect corners and junctions. Spatial relations among
junctions are analyzed to construct a junction graph
whose nodes are boundary contours, L-junctions, and
T-junctions, and whose links are of two kinds. Coin-
cidence links denote associations between L- and T-
JUNCTION tokens and the BOUNDARY-CONTOUR to-
kens contributing to their formation. These represent
the visible structure of the contrast edges in the scene.
Alignment links found by simple grouping techniques
declare pairs of contour ends that are preferably near
to and align with one another across pairs of L- or T-
junctions. See Figure 6.

An interpretation of contour overlap relations con-
sists of a labeling of the nodes of the junction graph,
where the links provide and propagate constraint on
nodes’ labels by means of the figural biases presented
above.

In the solution phase, search over the space of
junction label assignments is conducted with the goal
of minizing energy cost. We employ a continuation
method which permits decisions to be made gradually
as local preferences propagate around the graph.

While the final solution goal is a discrete choice over
junction labels, we employ a “soft” representation ad-
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Figure 6: Four BOUNDARY-CONTOURS forming two L-
JUNCTIONS, and their corresponding junction-graph
containing coincidence links (C) and an alignment link

(A).
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Figure 5: Three among many possible interpretation labelings of the Kanizsa Triangle, and their
associated energy costs. All labelings are stable at high inverse-temperature, but a. (the global
optimum) is converged to by the algorithm annealing from low inverse-temperature. Shading was
done by hand to accentuate program output (arrowheads).

mitting continuous-valued beliefs 0 < b;; < 1 in the
validity of interpretation label / for node j. Because
each visible junction is assumed to arise from one and
only one physical cause, we impose the further con-
straint, {Vj : > ;b;; = 1}, giving the belief vector
resemblance to a probability distribution over inter-
pretation states. Calculation of an energy cost for a
given belief state of the junction graph proceeds using
the figural biases above, now weighted according to
the belief vectors of nodes participating across coinci-
dence and alignment links. Subtleties of this process
are discussed further in [8].

The global energy cost is simply the sum of en-
ergy costs for individual nodes in the junction graph.
A node’s local energy cost is determined by its own
belief vector in relation to those of its link neighbors
according to the figural biases as determined by align-
ment and coincidence links. In order to give local evi-
dence the opportunity to propagate around the junc-
tion graph, we desire that belief vectors not immedi-
ately choose lowest energy cost labels in winner-take-
all fashion, but instead iteratively gravitate from neu-
trality toward a single interpretation. A mechanism
for accomplishing this is provided by the technique of
deterministic annealing[2, 7]. An inverse-temperature
parameter 3 is used to govern the mapping between
energy cost and belief distribution using the Softmax
operator:

e~ PEj.
biy1j1= W’

where t is an index of time or iteration number. Low
inverse temperature spreads belief more evenly over all

available states, while raising inverse temperature cor-
responds to “cooling” toward a winner-take-all state.
All experiments reported in this paper were performed
using a simple predetermined annealing schedule con-
sisting of ten iterations at each of five temperatures,
8 =10.5,1,2,3,10. Scenes of this complexity are inter-
preted in less than a minute on a Symbolics XL1200
Lisp Machine.

4 Results

In addition to the Kanizsa triangle result of Figure
ba, Figure 7 presents input images along with inter-
pretations found by the algorithm for two represen-
tative situations. Figure 7a/b shows the algorithm
working with somewhat noisy input obtained from a
video frame of a construction paper scene under stan-
dard office lighting. Figure 7c/d demonstrates a scene
whose preferred interpretation includes a nongeneric
edge alignment at a T-junction.

Simulated annealing methods are known to be sus-
ceptible to local optima, and Colorforms scenes can be
constructed for which the described diffusion-style al-
gorithm fails. For these, more sophisticated methods
resembling those for solving Markov nets are under
investigation [10].

Figure 8 shows that the algorithm is amenable to
accepting augmented evidence such as stereo cues.
Stereo evidence of relative surface depth at some L-
junctions of the Kanizsa triangle was simulated simply
by injecting energy cost for junction interpretations
violating the stereo depth cues. Note that resulting
weaving interpretation matches human perception of
the stereo scene.



Figure 7: a/b Frame from video input of a construction paper scene. c¢/d The preferred percept requires a
nongeneric interpretation (interpretation label T4) for the upper right T-junction.

5 Conclusion

This paper has presented computational analy-
sis of junction labels and figural biases underlying
the perceptual organization of occluding contours of
static opaque surfaces, and has outlined an algorith-
mic model that allows locally-derived constraints to
influence one another by propagating around a junc-
tion graph, leading to a global interpretation. The
model’s predictions accord with human perception for
a variety of scenes, and account for preferred and co-
herent interpretations under subtle interactions of lo-
cally ambiguous cues.

By focusing on labeling of boundary contours alone,
the present approach cleanly factors away and post-
pones decisions about surface segmentation—which lo-
cal surfaces patches are associated with one another.
In addition to setting the stage for a modular sur-
face segmentation process, the framework we have

presented raises many other possibilities for future
work, including enhancement of the collection and
massaging of input data, improvements to the ev-
idence propagation machinery, resolving ambiguous
alignment links in the annealing stage, and extensions
to motion and transparency.
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