
Stylus Input and Editing Without Prior Selection of Mode

Eric Saund
 Palo Alto Research Center

3333 Coyote Hill Rd
Palo Alto, CA, 94304

saund@parc.com

Edward Lank
Computer Science Department
San Francisco State University

1600 Holloway Ave., San Francisco, CA, 94132
lank@cs.sfsu.edu

ABSTRACT
This paper offers a solution to the mode problem in
computer sketch/notetaking programs. Conventionally, the
user must specify the intended "draw" or "command" mode
prior to performing a stroke. This necessity has proven to
be a barrier to the usability of pen/stylus systems. We offer
a novel Inferred-Mode interaction protocol that avoids the
mode hassles of conventional sketch systems. The system
infers the user's intent, if possible, from the properties of
the pen trajectory and the context of the trajectory. If the
intent is ambiguous, the user is offered a choice mediator in
the form of a pop-up button. To maximize the fluidity of
drawing, the user is entitled to ignore the mediator and
continue drawing. We present decision logic for the
inferred mode protocol, and discuss subtleties learned in
the course of its development. We also present results of
initial user trials validating the usability of this interaction
design.

Keywords
Pen, stylus, sketch, draw, command, mode, InkScribe,
Inferred-Mode protocol.

 INTRODUCTION
Modern drawing programs are of two types, structured
graphics programs, and sketch programs. Structured
graphics programs, such as Microsoft PowerPoint, Corel
Draw, and Adobe Illustrator, are primarily designed for
interaction with a mouse. Sketch programs are primarily
designed for stylus interaction; their goal is to simulate the
freeform writing of textual notes and sketching of drawings
afforded by a physical pen or pencil on a surface.
Examples include paint programs, the Tivoli electronic
whiteboard program [7] and the notetaking applications for
the Apple Newton and the Microsoft Tablet PC. The
primary data type consists of digital ink, where the basic
unit is the stroke, which records the spatio-temporal
trajectory of the pen/stylus (and sometimes additional
properties) from touchdown to lifting from the surface.

A classic problem faced by all sketch programs is the mode

 problem [13]. In order to take advantage of the computer's
ability to modify existing strokes using spatial gestures, the
pen's function must be overloaded to serve multiple
purposes. In draw mode, pen strokes become literal
markings of digital ink. In command mode, pen strokes
represent abstract gestures, which in turn can carry a
number of alternative interpretations, the most common of
which is the selection gesture. The mode problem results
from the fact that the user must perform a deliberate prior
mode-switching action. This action could be to press a
button on the stylus, to double tap the stylus, to tap a
toolbar button, or to touch the stylus to the screen and hold
it motionless for a period of time until the cursor indicates
that command mode has been entered. The problem occurs
when users neglect to set the intended mode prior to
performing their draw or command stroke: they find
themselves drawing spurious strokes or meaningless
command gestures, depending on the direction of the error.
To recover, the user must disrupt their task and devote
attention to repairing their digital ink content and/or getting
into the intended mode.

Our prototype solution for this problem focuses on
permitting the user to either draw or select image material
without prior mode specification, on the assumption that
selection is the primary avenue to other operations such as
moving, rotating and scaling, copying, etc. Extension to
other immediate command operations such as scratch-out
erasing is possible but not currently implemented in our
system.
RELATED WORK
One approach to the mode problem is to provide clear
depiction of mode to the user. A recent example is the
altering of prompts in PDA devices to indicate upper case
vs. lower case mode [10]. The presence of a mode indicator
in a visual or other modality makes little difference,
however; when users are attempting to select an object,
they focus their attention on that object, i.e. on what the
desired effect is, rather than on the indirect matter of the
state of the program that may be required to achieve that
effect [12].
Some investigators have explored quasi-modes, or
temporary modes invoked by explicit motor actions [9].
For example, Mohammed and Fells used a foot pedal in an
interface to control music sequencing software [5].

mailto:Eric.Saund@parc.com
mailto:lank@cs.sfsu.edu

Flatland [6], and PostBrainstorm [2] require users to press
a pen button to enter command mode. This interaction
style suffers from at least two drawbacks. First, on some
devices, for example large electronic whiteboards and
modern Tablet PCs, physically managing to press or not
press a pen button while writing and gesturing can be
awkward. Second, quasi-modes still require the user to
perform a deliberate mode-setting action in addition to the
motion that reflects the actual drawing stroke or selection
gesture they intend. The cognitive load of remembering to
perform this prior step purely for the sake of the interface is
not relieved.
Another approach is to employ different physical hardware

m is the use of

Newton support an

rotocol, a mediator is used to

THE INFERRED-MODE PROTOCOL
the user to perform

for draw and edit functions. SmartBoards, Mimios, and
other devices provide physical eraser objects distinct from
electronically sensed pens, and some Tablet PC pens have
an active eraser tip as well as a drawing tip. Cosmetically,
these can potentially simulate the user experience exhibited
by physical counterparts to the electronic devices. We
cannot pass final judgment on the usability of these
approaches, but we do note that artificial constraints – such
as having to replace a pen to the proper color tray, or being
required to erase physical ink only with the electronic
eraser – do create some usability problems. Alternative
interaction techniques bear investigation.

A fourth approach to the mode proble
specialized gestures to perform direct manipulation. One
system uses a shorthand notation to create content and then
allows users to edit the content [2].
Some systems such as the Apple
immediate delete command indicated by a scratch-out
gesture. To perform normal selection with a Newton the
user must still deliberately switch modes by holding the
pen motionless for an extended period of time to get into
command mode. This approach has been widely adopted
in modern Tablet PC software. Once in command mode,
selection is done by drawing the pen (with the highlighting
mark showing as the cursor) across a single object, or by
encircling multiple objects. This option does not reduce
the need to monitor modes. A user must still be aware of
the mode of operation of the application, and mode errors
remain a hazard. Holding the pen motionless has also been
adopted by Pook et al. to activate a type of marking menu
called control menus [8].

In our Inferred-Mode p
resolve ambiguity. Mankoff et al provide a taxonomy of
mediators [4]. Our system uses the Choice mediator.
Extending the work of Mankoff et al., the inferred mode
protocol shows how a recognition strategy addresses not
only data entry, but also handles recognition ambiguity at
the draw/command mode boundary.

The Inferred-Mode protocol allows
either draw or command gestures without having to

perform a deliberate prior action specifying the intended
mode. Instead, after each stroke the program attempts to
determine what the intended mode was from context.
When the user’s gesture is ambiguous the system presents
the user with a localized pop-up button that activates the
selection command (and other commands under possible
extensions to our system). See Figure 1.

Figure 1. Handling ambiguity in user gestures.

Figure 2 depicts a flowchart summarizing the mode
inference and mediation logic.

Figure 2. Mode inference and mediation logic.

One of the key differences between inferring the delete
command from a scratch-out gesture (as in the Newton)
and inferring object selection, is that it is critical to give
users multiple command options with regard to selected
material, including the ability to modify their selection, that
is, to incrementally add objects to the selected set. This is
important for example if the user wishes to rotate a
spatially distributed set of objects about a common pivot.
As is standard practice, objects that are selected are so
indicated in our system by a visual highlight or halo.
Accordingly, several branches in the decision tree hinge on
whether some image objects are already selected. If so,

rotate/scale handles are superimposed on the canvas along
with a small button which, when tapped, brings up a menu
of additional operations. The user can: 1. tap the button to
bring up the pop-up menu; 2. place the stylus on a
rotate/scale handle and drag to resize or rotate it; 3. place
the stylus on selected material and drag to translate it; 4.
start a gesture in free space (the background).
In the case that a gesture has commenced in free space,
upon completion (pen-down/drag/pen-up) the system
distinguishes between a tap and an extended stroke on the
basis of path length. In the case of a tap, depending on
location it can cause image objects to be selected or
deselected. Taps on unselected objects cause them to
become selected, while taps in the background cause all
objects to become deselected: the ability to de-select by
tapping in the background amounts to a readily available
"reset" operation. We have experimented with providing
the ability to selectively de-select a subset of the selected
objects, but have found that while this is demonstrable
under experimental test conditions, the interaction proves
unreasonably complex and unpredictable in actual use.

If the user draws a long gesture, i.e. a stroke, then the
system examines the characteristics of the stroke. If the
stroke is an open gesture, or if the stroke is a closed loop
but contains no objects, the system infers that the user's
intent for that stroke is to draw digital ink.
We employ a simple heuristic shape analysis algorithm to
determine whether a stroke is considered closed or not; to
support fast and fluid selection it need not be perfectly
closed in a topological sense. To determine whether image
material lies within an encircling gesture, we calculate a
tight convex hull for a closed stroke and then use a raster
coloring algorithm to determine containment. We also
support selection and editing of imported bitmap imagery,
and some image processing is required to determine
whether a closed (or nearly closed) path actually encloses a
portion of a bitmap. Digital ink and bitmap objects in the
vicinity of the stroke must be considered, and if any is only
partially contained within the encirclement, their
intersections with the encircling path must be determined
and these objects split into "inside" (enclosed) and
"outside" (excluded) parts. The processing requirements
are nontrivial but are handled ably by modern personal
computers.

 If a gesture is a closed loop containing image material, the
situation is possibly ambiguous as to whether the user
wishes to draw a literal circle around the material, or select
it through encircling. A pop-up button labeled, "Select?"
appears near the end of the stroke (see Figure 1). If the
user intends for the stroke to select by encircling, they tap
the button. Otherwise they are free are to ignore it and
keep writing or drawing, in which case the pop-up button
disappears and the stroke is rendered as digital ink.

In the case that some image material is already selected, it
should be possible to augment that selection by encircling
additional objects. However, our experience reveals a
complication. It is quite common for users to select
something in one part of a scene, modify it, and then attend
to some other part of the scene, neglecting to tap in the
background to deselect, or reset, the selection state. They
do not intend for subsequent selection and editing
operations to include the already-selected and modified
material, yet they commonly fail to notice that it is still
selected, and they inadvertently include it in the later
selection and modification operation. Therefore, our
decision logic includes a branch that determines an
encircling gesture to be a selection augmentation command
only if it is preceded by a selection command (either a click
to select or selection using the mediator). If, instead, the
previous action manipulated selections, the system de-

fying the

scanned input and the grouping of digital ink and
ng perceptual organization as discussed

 paradigm in the form of

selects the previous selection and, if the stroke is closed
and contains objects, displays the “Select?” button.

Because the pop-up button may be disregarded, it is
minimally disruptive. The occasion in which the button
appears spuriously to the user's intent occurs when the user
intends to draw a closed or nearly closed path of digital ink
enclosing other image material (see Figure 1). In this case,
the button becomes a visual distraction. Cognitive
distraction decreases with time as users learn to ignore the
button when their intent is not to select. The most serious
potential for disruption occurs when the button occludes a
portion of the canvas where the user wishes to initiate
another drawing stroke. For this reason it is important that
the pop-up button appear in a location somewhat removed
from the where the pen is lifted. In our early experience,
spurious appearances of the mediator occurred most often
during fluid writing which contains many small closed
strokes. We alleviate this problem by modi
enclosure detection criteria to disfavor very small closed
paths entered in a quick succession of strokes.

Our Inferred-Mode protocol is implemented in a prototype
stylus-based drawing tool called InkScribe. InkScribe also
incorporates additional features to enhance the usability of
pen computers, including the uniform treatment of digital
ink and
bitmap objects usi
in [11].

USER TRIAL
We conducted a preliminary user trial of the Inferred-Mode
protocol, contrasting it with a standard version of our
sketching/drawing program. The standard version used a
conventional prior mode-switching
buttons at the top of the screen. All other aspects of
program behavior were the same.
Our user trial involved seven users performing a set of
tasks during a half-hour session. Users were given an
introduction to each interface during which we described
the behavior of the interface and allowed the users to

practice. The order in which the interfaces were presented
to the users was varied to avoid biasing the results. During
the experiment, the users were given five tasks which they
performed with each interface. Each task had two
components and spanned two pages. The first part of the
task, on the first page, asked the user to sketch some
content. The second part of the task asked the user to

repr

puter in the order presented.

ith

d/disliked about each.

 Of the two
e no err , one pr rre the ode-based

interface, the other the Inferred Mode protocol.
mode errors 4 1 3 5 0 0 3

rearrange and add to the content they initially created. A
esentative task was as follows:

1. Write down a series of numbers (which we provided)
on the tablet com

2. Rearrange the numbers in increasing order, circling the
even numbers.

Users were given both a written description of the task, and
a pictorial representation of what the canvas should look
like after completion. We observed users and counted the
number of mode errors made. We concluded the trials w
a short interview where we asked the user which interface
they preferred and what they like
Four of seven users preferred the Inferred-Mode protocol,
even after only 1/2 hour of use.
Although difficult to draw strong conclusions from our
sample set, data generated by our initial user trial is
noteworthy. No user mode-setting errors were made in any
Inferred-Mode trial (and indeed, the protocol makes it
difficult to do so). In the mode-based interface, the number
of mode errors varied from zero to five. Two users made
no mode errors, one made five, one four, and two made
three. The two users who made no errors exhibited a
tendency to over-set the modes. Even when in the correct
mode, they would re-press the “Draw” or “Edit” button to
ensure the correct mode. As well, it seems that the absence
of errors is not an indication of user preference.
users that mad ors efe d m

Pref: M M ode/Inferred I I M I I M

Table 1 Summary of data from user trial.

In more complex tasks such as brainstorming activities it
has been noted that even lightweight constraints on user
interaction can be burdensome [1]. We are conducting
more extensive experimental trials entailing detailed
analysis of the conditions under which mode errors occur.
In particular, the incorporation of a distracter task would be
valuable in analyzing the prevalence of errors in simple

 We suggest
-Mode protocol shows good promise of

of

 Buxton, “The Limits of Expert

niques for Resolving

s, “LMNKui: Overlaying

 A.

: An Electronic Whiteboard for Informal
orkgroup Meetings”, INTERCHI ‘93. ACM, New York,

1993.

e

ng for a Humane Interface”, CACM,

 prompt for text be a mode signal”, CHI 2002, 836-

etch Understanding, Stanford University, March
002.

drawing tasks, and the benefits of alleviating those errors
by inferring modes.
We believe that our early testing has uncovered the major
critical design factors toward obviating the mode problem
in pen-based sketch systems using an Inferred-Mode
approach. In our design and implementation, the Inferred-
Mode protocol is conservative in its ambitions about

inferring user intent. Care in design and implementation
are critical to avoiding the classic failure modes of DWIM
(Do What I Mean) systems that are overly confident and
aggressive about guessing what a user wants.
that the Inferred
falling on the safe and useful side of the line.

REFERENCES
1. J. Arvo, “Computer Aided Serendipity”, Proceedings
Graphics Interface, 1999, 183-192.
2. F. Guimbretiere, M. Stone, and T. Winograd, " Fluid
Interaction with High-resolution Wall-size Displays,"
Proceedings UIST'2001, ACM, Orlando, November 2001.
3. G. Kurtenbach and W.
Performance Using Hierarchic Marking Menus”,
INTERCHI ’93, 482-487.
4. J. Mankoff, G. Abowd, and S. Hudson, “OOPS: A
Toolkit Supporting Mediation Tech
Ambiguity in Recognition-Based Interfaces”, Computers
and Graphics, 24:6, 2000, 819-834.
5. F. Mohamed and S. Fel
computer controls on a piano controller keyboard”, CHI
2002, 638-639.
6. E. D. Mynatt, T. Igarashi, W.K. Edwards, and
LaMarca. “Flatland: New Dimensions in Office
Whiteboards”, Proceedings of CHI'99, pp. 346 - 353.
7. E. Pedersen, K. McCall, T. Moran, and F. Halasz,
“Tivoli
W

8. S. Pook, E. Lecolinet, G. Vaysseix, and E. Barillot,
“Control menus: excecution and control in a singl
interactor”, CHI 2000 Extended Abstracts, pp. 263 - 264.
9. J. Raskin, “Looki
40:2, 1997, 98-101.
10. H. Ryu, “Will it be upper-case or will it be lower-case:
can a
837.
11. E. Saund, J. Mahoney, D. Fleet, D. Larner, and E.
Lank, “Perceptual Organization as a Foundation for
Intelligent Sketch Editing”, 2002 AAAI Spring Symposium
on Sk
2
12. A. Sellen, G. Kurtenbach, and W. Buxton, “The Role
of Visual and Kinesthetic Feedback in the Prevention of
Mode Errors”, Proceedings of Human-Computer
Interaction, 1990, 667-673.
13. L. Tesler, “The Smalltalk Environment”, Byte, August
1981, 90-147.

	ABSTRACT
	Keywords

	INTRODUCTION
	THE INFERRED-MODE PROTOCOL
	�
	USER TRIAL
	REFERENCES

