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Labeling of
Curvilinear Structure Across Scales
-by Token Grouping

Abstract

This paper presents an algorithm for labeling curvilinear structure at multiple

scales in line drawings and edge images. Symbolic CURVE-ELEMENT tokens residing in .

a spatially-indexed and scale-indexed data structure denote circular arcs fit to image
data. Tokens are computed via a small-to-large scale grouping procedure employing

1

a “greedy,” best-first, strategy for choosing the support of new tokens. The resulting
image description is rich and redundant in that a given segment of image contour
may be described by multiple tokens at different scales, and by more than one token
at any given scale. This property facilitates selection and characterization of portions
of the image based on local CURVE-ELEMENT attributes.

1 Introduction |

An important class of structure occurring in images takes form as extended curvilinear
contours that appear as straight or gently curving lines. Localized edge and line
detectors perform initial measurements of these structures but classically are best
suited to detecting image events matched to simple straight step-like or ridge-like
intensity profiles. The organization of local oriented edge and line assertions into
larger scale entities is ani important step toward identifying semantically meaningful
units reflecting object boundary contours, shadow edges, material changes, surface
markings, or other physical processes that give rise to curvilinear contours.

This paper presents an algorithm for labeling extended curvilinear structure in
terms of symbolic assertions, called CURVE-ELEMENT tokens, that denote poses (lo-
cations and orientations) where image data may be approximated by a circular arc.
The assertion of circular arcs at different locations and sizes constitutes a useful ab-
straction of curvilinear structure for a number of reasons. A circular arc model is of
modest comﬁléiﬁty, allowing greater precision of approximation than a stréigﬁt line,
yet considerably simpler than a spline or polynomial model. Circular arc CURVE-
ELEMENT tokens “glue together” collections of individual pixel-level line elements so
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that they may be treated as wholes. These chunks may be assigned aggregate prop-
erties of their own, such as curvature and smoothness, that summarize the original
information, and CURVE-ELEMENT tokens may be queried, polled, and selected based
on their individual properties and their spatial relationships.

As shown in figure 1, good circular arc approximating segments can overlap one
another. Because the goal of the present computational stage is to make explicit
this type of image structure wherever it occurs in an image, we embrace the notion
of overlap and allow a given contour segment in an image in general to support the
assertion of many CURVE-ELEMENT tokens. Accordingly, CURVE-ELEMENT tokens
are maintained at multiple scales of approximately octave (factor of 2) intervals in
magnification, and at spatial intervals along a contour equivalent to approximately
half their lengths. The target representation thus resembles that of Lowe [16].
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Figure 1: Circular arc approximations to a contour overlap one another.

Previous approaches to the identification of curvilinear structure in images are
primarily of four types: (1) global histogram methods; (2) iterative optimization
methods; (3) methods involving curve tracing, curve smoothing, and parameterized
curve fitting; and (4) grouping methods. .

Global histogram methods may be considered variants on the Hough Transform
[4, 33]. The shortcomings of these methods for detecting imprecisely modeled data

. (e-g. arcs that don’t form a perfect circle) in the presence of noise are well documented
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(see [14]). Spatially localized Hough Transforms have, however, been used successfully
in conjunction with a line segment grouping strategy [28].

Existing iterative optimization methods [34, 26, 38] operate at a single (finest) spa-
tial scale. Local assertions are influenced by spatially distal information through iter-
ation of a local propagation step. Certain types of image structure, such as smoothly
curving contours, become accentuated as specified by an optimization function, and
a second step such as curve tracing or snake-like parameterized curve fitting [15]
is needed to recover curves as individuated entities. These processes sacrifice self-
similarity across scales (does the same output obtain when the original image is
simply magnified in size?) because the optimization function is expressed in terms of
target spatial structure at only the finest scale.

A number of previous methods rely on an initial curve tracing step to link stnngs
of pixels into chain-coded contours. Then, curve smoothing or parameterized curve

fitting techniques are used to obtain lower resolution descriptions or symbolic charac-

terizations of the curve data [3, 12, 13, 17, 19, 21, 24, 25, 27, 31]. These methods have
revealed that salient intermediate and large scale curvilinear structure is often only
tenuously reflected in the set of purely local pixel neighbor relations, and can there-
fore be difficult to recover from curves generated by local pixel linking. It becomes
necessary to devise methods to break chain-coded curves at potentially significant

points such as inflections and curvature extrema [3, 16, 19, 31], and to link initially .

unrelated curves on the basis of spatial proximity [16, 21]. These latter techniques
lead to grouping methods.

Token grouping methods for 1dent1fy1ng and labeling significant image structure
played a prominent role in the Primal Sketch theory of Marr [20]. Although Marr and
his colleagues constructed illustrative demonstrations suggesting that spatial events
such as extended contours and blobs could be computed by token grouping, the tech-
niques were never brought to conclusive results. Since then, a number of investigators
have developed techniques for small-to-large scale perceptual grouping of chain-coded
curves [21, 23], line segments [5, 16, 28, 32, 35] and parameterized curve segments
[11, 16]). These investigators’ grouping rules rely primarily on pairwise linking and

XEROX PARC, EDL-92-7, MAY 1992

3

e e



4

LABELING OF CURVILINEAR STRUCTURE ACROSS SCALES BY TOKEN GROUPING

merging of their respective elements based on proximity and alignment. Under group-
ing approaches, curvilinear structure can be identified by purely spatially local com-
putations even when it arises from topologically disparate image curves.

Key to any token grouping approach is means for deciding which subsets of tokens
at one scale are to aggregated into new tokens at a larger scale. This paper reports a
new greedy algorithm that, starting from an injtial seed token, adds tokens one-by-
one to the support set of sufficiently aligning tokens falling in the neighborhood of the
seed, until an adaptive threshold on alignment is exceeded. This “greedy” algorithm
lies at the heart of a relatively simple and conservative one-pass grouping strategy
based on alignment of the arcs represented by nearby tokens. Under this strategy,
larger scale CURVE-ELEMENT tokens: (1) perform a smoothing of the image contour,
(2) bridge small gaps in image data, and (3) continue a circular arc segment in the
presence of extraneous crossing contours. The grouping algorithm is supported by
a spatially and scale indexed data structure called the Scale-Space Blackboard. This
data structure is important because the ability to access tokens on the basis of their
locations and sizes simplifies computations concerning spatial relationships among
image events, and improves the efficiency of computations on local neighborhoods.

The present work makes the following contributions: First, as mentioned it offers
a new grouping procedure attacking in a novel way the problem of choosing the sup-
port for new, larger scale, tokens. Second, the definition of CURVE-ELEMENT tokens
plus their organization on the Scale-Space Blackboard unifies several advantageous
concepts: (1) a spatially and scale-indexed data structure is used to organize data; (2)
computation is hierarchical and local with respect to spatial scale, making it amenable
to implementation in parallel hardware; (3) token assertions at all scales are preserved
and made available for later computation; (4) a single type of descriptor labels both
curving arcs and line segments (arcs with curvature = 0); (5) tokens are abstract en-
tities capable of maintaining a great deal of information including pointers or links to
neighbor, ancestor, and descendent tokens; (6) self-similarity across scales is achieved
by expressing spatial relationships in terms that normalize for scale. This work draws
from a previously reported method for multiscale grouping of tokens representing
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primitive figure/ground boundaries arising from binary shape images [30]. However,
the present paper significantly departs from the previous work in two ways: (1) the
present CURVE-ELEMENT tokens have different interpretations, include a curvature
parameter, and are suitable for line drawings or connected curves derived from edge
and ridge detector outputs, and (2) the grouping rules incorporate a greedy algorithm
and are therefore different in function, simpler, and more clearly motivated.

2 Tools: CURVE-ELEMENT Tokens in Scale-Space

The CURVE-ELEMENT description of an image consists of a set of tokens scattered in
a three dimensional space consisting of two spatial dimensions plus one scale dimen-
sion. The construction of such a description, as well as its subsequent use for image
interpretation, demand efficient and effective tools for computing information about
the relative locations, orientations, and sizes of arcs represented by tokens, and for

accessing tokens on these bases.

” 2.1 Self-Similarity Across Scales

Self-similarity across scales is a property by which information about spatial con-
- figurations, such as the arrangement of marks on this page, may be disjoined from
information about the absolute size of their appearance in an image. For example,
figure 2a: depicts an arrangement of marks comprising a circular arc. A description
of this arc that does not possess self-similarity with respect to scale is curvature, be-
cause when the arc is magnified in size, the radius of curvature changes. A property
that does remain invariant with respect to magnification is angular extent, which is
proportional to the arc’s length divided by (normalized by) the radius of curvature.
Objects’ identities are invariant with respect to their spatial magnification in images.
That arcs of like angular extent appear more similar than arcs of like curvature sup-

ports the view that self-similarity across scales is a desirable property for a visual

representation.
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Figure 2: Scale-normalized measures of curvature and distance are invariant with
respect to spatial magnification.

For this reason, in the present work information about metric curvature is ex-
pressed as a scale-normalized curvature, (or sn-curvature), which is equivalent to
angular extent. By convention, positive sn-curvature is interpreted as curving in
the clockwise direction while negative sn-curvature means counterclockwise turning.
Similarly, scale-normalized distance is employed as a measure of distance between two
spatial events that normalizes for the absolute sizes of the events and thereby achieves
invariance with respect to absolute magnification. '

These scale-normalized measures are facilitated by, following Witkin [36], gradu-
ating the scale dimension logarithmically so that equal intervals correspond to equal
amounts of spatial magnification. Thus, a spatial magnification m is equivalent to a

translation s in the scale dimension:
s = Alogm, (1)

where A is a constant. Then, the scale-normalized curvature, P«, of a circular arc

segment whose scale is s is given by

sn

Bl

K= Kea,

(2)

The scale-normalized distance between two spatial events occurring at scales s; and
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s3, Tespectively, and separated by a distance D, is given by

e | ®)

= %(e% +e%).

Further justification for these definitions is provided in [30].

2.2 CURVE-ELEMENT Tokens

A CURVE-ELEMENT token possesses six properties of primary interest: (1) x-location,
(2) y-location, (3) orientation, (4) scale or size, (5) scale-normalized curvature, (6)
smoothness. See figure 3. To expedite certain computations it is also useful to cache
within each token pointers to other tokens such as nearby tokens, supporting tokens,

and the nearest neighbor on each end.

CURVE-ELEMENT token
name: ce-2854
x-Jocation: 3476
y-location: 93.4
orientation: .148

sn-curvature: .086
- smoothness:  1.32

Figure 3: A CURVE-ELEMENT token is a packet of information about a circular arc.
The token in (b) is consider smoother than the token in (c) because its support falls
within a narrower window.

The scale s of a token.is the location in the scale dimension corresponding to.the ...

tokens’ arc length [,

o= Alog (%) , / @)
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where [ is some distance assigned s = 0.

Because a CURVE-ELEMENT token asserts a circular arc without regard to the
figure/ground relationship of the regions on either side of the arc, each token with
orientation # and sn-curvature S« is equivalent to a token with orientation § +x and
sn-curvature (— «), and all computations must accord with this 180° symmetry
property of CURVE-ELEMENT tokens.

The smoothness of a CURVE-ELEMENT token is a statement about the precision
to which the arc model fits the underlying image data. Smoothness is expressed
as a distance in the scale dimension, equivalent to asking, down to what scale of
tokens does the support of the arc fall within a predetermined scale-normalized spatial
distance 2D, from the arc? For an arc R of length ! fit to a set of (dimensionless)

points, p;, smoothness H becomes:

H = —log B2 D& pi)

where D measures the (absolute) distance between the arc and a point, and B is a
constant. This is a self-similar measure, so the same smoothness is assigned to an
arc with respect to a given set of points regardless of the spatial magnification of
the system. Due to the logarithm, an arc whose support fits precisely is considered

infinitely smooth.

2.3 Scale-Space Blackboard

CURVE-ELEMENT tokens are maintained in a data structure called the Scale-Space
Blackboard which preserves the pictorial, spatial, organization of the original two-
dimensional image. Tokens in the Scale-Space Blackboard are additionally organized
by scale. In practice, this data structure consists of a stack of two-dimensional arrays,
each element of which is a list of tokens falling within the spatial domain of that bin,

“while each level in the stack spans an octave range in theé scale diftiension.

A typical operation on the Scale-Space Blackboard is, “Deliver all tokens within
scale-normalized distance S2D of the token at (z,y, s).” The property of self-similarity
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across scales may be used to advantage by quantizing space, at each level in the Scale-
Space Blackboard, with a tesselation size proportional to a constant scale-normalized
distance. This results in coarser quantization at larger scales, and the data structure
therefore resembles a pyramid architecture [29).

The ability to index information on the basis of spatial location and scale con-
tributes substantially to the efficiency of local grouping algorithms. The combina-
.. torics of testing subsets of tokens for, say, sufficient alignment, grows prohibitively
quickly with the number of tokens describing the image unless unlikely candidate
subsets can be excluded a priori through a spatial selection facility such as provided
by the Scale-Space Blackboard.

3 Computing CURVE-ELEMENT Tokens
3.1 Placement of Smallest Scale Tokens

CURVE-ELEMENT tokens at the finest, initial, scale may be asserted by any of a
variety of methods, for which the subsequent grouping algorithm works equivalently.
The main requirements are that tokens falling along a common contour align with
one another reasonably well, and that they are are placed at appropriate intervals
along image curves. The representation is designed for tokens’ arcs to overla.p one
another by approximately 50% of their lengths.

The intial tokens for figures 6 and 9 were generated by first thinning the original
image to 4-connectivity, then creating chain-linked curve segments by tracing curves
(without particular regard to the behavior at junctions), and finally placing CURVE-
ELEMENT tokens at intervals of every four pixels along the curve segments. Token
location, orientation, and sn-curvature were determined by least squares fit to nine
pixels, these being the center pixel and the nearest four in either direction.

For fitting a circular arc to a set of points, we employ a simple two-stage procedure.

Bookstein’s [6] efficient method for fitting a circle to points works well for points
‘forming deep arcs (> ~90°), but breaks down for noisy shallow arcs. Conversely,
shallow arcs are adequately fit by a parabolic model. Therefore, we first perform a

XEROX PARC, EDL-92-7, MAY 1992
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least squares parabolic fit through the centroid of the points; if the arc is sufficiently
shallow, these fitting parameters are adopted for the CURVE-ELEMENT token; if not,
pose and curvature parameters from Bookstein’s method are used.

An alternative method for computing finest scale CURVE-ELEMENTS was employed
for figure 7. This involved detecting intensity ridges by filtering the original image
with a cosine phase Elementary Gabor Filter (see e.g. [10]) at 22.5° orientation in-
tervals, performing non-maximum suppression, then thresholding at a threshold set
automatically by means similar to that described by Canny [8]. A 0-curvature CURVE-
ELEMENT token could then be placed at every surviving pixel with orientation equal
to that of the most strongly responding filter. To prune excess tokens until neighbor-
ing tokens were spaced at an appropriate scale-normalized distance, a subsampling

procedure was used similar to that described in section 3.3.

8.2 Small-to-Large Scale Grouping

The crux of the computation lies in the grouping operation by which a set of CURVE-
ELEMENT tokens at one scale may give rise to a new CURVE-ELEMENT token at a
scale approximately one octave larger in size. The ideal case is shown in figure 4a.
Here, tokens Ty,T3,and T5 occurring at, say, scale s = 2, are well aligned with one
another and may support the assertion of token T occurring at scale s = 3. The pose
and curvature of token T, are determined by least squares fit, as described above, to

- points sampled along the lengths of the arcs represented by its supporting tokens.

While this ideal case does occur often in real images, the real challenges to group-
ing methods are found in more complex geometric configurations. The remaining
examples of figure 4 present a number of other, more difficult, situations that may
be observed to occur in images possessing curvilinear structure readily apparent to
human observers. These include crossing contours, gaps, tangential junctions or Y-

- junctions, and surrounding clutter.

The problem faced by a token grouping approach may be viewed in the following
way: suppose we adopt a strategy analogous to the ideal case, that is, a fitting
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Figure 4: (a) In the ideal CURVE-ELEMENT grouping case, all of the tokens in the -

vicinity of a “seed” token (T) contribute points from which the parameters of a
larger scale CURVE-ELEMENT can be computed. More difficult situations arise when
contours cross one another (b), have gaps (c), form Y-junctions (d), or are found
among the clutter of nearby contours (e).

algorithm will compute arc parameters for a token at some larger scale based on
points derived from tokens occurring at a smaller scale range. Then, which smaller
scale tokens are to serve as support (contribute points for fitting) for each larger scale
token? Figure 5 illustrates the issue for situation 4d. Figure 5b demonstrates that
fitting an arc to all of the CURVE-ELEMENTS in a spatial neighborhood can result in
an incorrect assertion about the larger scale curvilinear structure. We are led to the
strategy of selecting the support for new, larger scale, CURVE-ELEMENTS by choosing
among subsets of smaller scale tokens.

If at least two smaller scale tokens are required to support a larger scale token,
then combinatorially, > 5, : subsets of n tokens may be constructed. Figure 5¢

shows the twenty-six arcs resultmg from fits to points derived from all possible such

subsets of at least two of the five tokens in figure 5a. A suitable criterion for selecting

the good arcs, that is, the arcs that agree well with their support and capture the

larger scale curvilinear structure, is offered by the smoothness measure presented in
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>
>

Figure 5: (a) Five CURVE-ELEMENT tokens. (b) The least-squares arc fit to all of .

these tokens. (c) The 26 arc fits to subsets of at least two tokens. (d) The two arcs
from (c) having the greatest smoothness parameter.

section 2.2. This is illustrated in figure 5d, which displays just those arcs in figure 5¢
whose smoothness falls above a threshold.

Thus the goal of CIRCULAR-ARC token grouping is to efficiently identify collections
of tokens that yield larger scale tokens of high smoothness when a circular arc fit
is made. For the bulk of the small-to-large scale token grouping operations, this
can be accomplished by an algorithm based on the following strategy: Each token

occurring in a given scale range serves as a seed that attempts to recruit nearby

CURVE-ELEMENTS to support a token approximately one octave larger in scale. The
algorithm is “greedy” in that nearby tokens are recruited one-by-one, best first, on the
basis of their contribution to the smoothness of the larger scale arc. More formally,

For each seed token T;:

" 1Throughout the paper free parameters of the computation such as thresholds are denoted by
the symbol, p. All reported results employed the same fixed settings for these constants, the choices
for which are presented in Appendix B.
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1. Initialize the variables, suppori-list and potential-recruit-pool. Support-
list is the set of tokens to which the larger scale arc will be fit. Potential-
recruit-pool is a set of-tokens T; that are eligible to participate with
seed token T; in the support of a larger scale token. To be included in
the potential-recruit-pool, a token must be in the same scale range as
T, it must be located within a threshold scale-normalized distance of
the seed token which is approximately equal to a tokens’ arc length,
and it must fall above a threshold measure of spatial relationship with
respect to T, called alignment affinity, and denoted F(T;,T;). Two
tokens’ alignment affinity is large when they are near to one another
and cocircular. Our particular mathematical expression for this relation
is presented in Appendix A.l '

- support-list — {T;} .
potential-recruit-pool «— {T; : |s(T:) — s(T3)| < p
AND 2°D(T;, T;) < po
AND F(THT)) > p3}

2. Attempt to recruit first the two tokens in the potential-recruit-pool
that are nearest to the seed token on each end (these are called the
forward-neighbor token, T; ¢, and the rearward-neighbor token, T; ).

Let ho be the smoothness of the circular arc fitting the tokens,
1;'7 Tz',fwa and Tz‘,rw;

if  ho>ps

then support-list « {T;,T; s, Tirw }

else support-list — {T;}

3. Iteratively recruit the best candidate token from potential-recruit-list
until the smoothness of the resulting arc falls below an adaptive thresh-

old, o.
3a. Initialize o.
if  ho> ps
then.o «— max(ps, peho)
else 00
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3b. For each token T; in the potential-recruit-pool and not already in
support-list, measure the smoothness 4; resulting for the circular arc fit
to the tokens that are already members of support-list, plus token Tj.
Set hpest +— max(h;), and set the variable T, to be the corresponding
best-fitting token.

3c. Either accept the best-fitting token and continue adding to support-list,
or else exit.

if hbest >0 y .
then support-list — {Tyest }Usupport-list

o« max(ps, pehsest)
proceed to step 3b.
else proceed to step 4.

4. Assign larger scale token parameters based on least squares fit to the
tokens in support-list, as described in section 3.1. Assign token smooth-
ness as described in section 2.2, and add to the Scale-Space Blackboard
all tokens whose smoothness exceeds a threshold value p-.

The effect of this algorithm is to recruit tokens that lie along a common contour.
If the local contour is fit by a circular arc very precisely, then the threshold ¢ will hold
potential recruits to a tight tolerance. If the arc forms a less than perfect circular
arc, more slop is allowed in the support tokens that can be recruited into suppori-list.

- The procedure is first carried out for seed tokens in the scale range, s = 0, deliv-

ering tokens in the scale range s = 1, or at approximately twice the size of the initial
seed CURVE-ELEMENTS. After a subsampling step, described below, these tokens in
turn give rise to tokens at scale s = 2, and so forth. The grouping step is spatially
local and may be carried out across all seed tokens at a given scale range in parallel.
A second, supplementary, mechanism for introducing larger scale CURVE-ELEMENTS
is based on bridging gaps between aligned tokens. Any pair of tokens T; and T; meet-
ing the following conditions is also allowed to spawn a new token: (1) |s(T3)—s(T})| <

ps (that is, T; and T; are in the same scale range); (2) po < 2D(T},T;) < p10; (3)

G(T:,T;) > pu1 (G is a measure for the degree to which two arcs lie on the same circle
(see Appendix A); (4) No other token lies between and in alignment with T; and 7.
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These conditions are spatially local and the detection of qualified “gap-bridging” pairs
is facilitated by the spatial 1ndex1ng properties of the Scale-Space Blackboard. The
resulting CURVE-ELEMENTS are asserted on the Scale-Space Blackboard along with
those found by the primary grouping mecha.msm, and the circular arc parameters are
determined as usual by least squares fit, in this case there being only two support

tokens.

3.3 Subsampling Larger Scale Tokens

Because a larger scale token is spawned at each seed token, the result of the above

15

procedure leaves larger scale tokens more densely packed than the target 50% overlap

of neighboring like-scale CURVE-ELEMENTS along the length of a contour. Therefore,
the following procedure is used to subsample tokens:

1. For each larger scale token, compute a redundancy-cost based on the
degree of overlap with and alignment with its forward-neighbor and
rearward-neighbor tokens.

2. Remove from the Scale-Space Blackboard every token whose redundan-
cy-cost is greater than that of both its forward—nezghbor and rearward-
neighbor, and greater than a threshold ps.

3. Proceed to Step 1., and repeat the procedure until no token is removed
from the Scale-Space Blackboard at step 2.
Due to subsampling, each octave range in the Scale-Space Blackboard will contain

approximately half as many tokens as the next smallest scale range.

4 Results
4.1 Performance

Figure 6 presents CURVE-ELEMENTS found by the grouping procedure for a line draw-
ing including three closed circular contours and many winding paths [18]. At each
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scale range, tokens are depicted by the circular arc they represent. A small circle is
drawn at the midpoint of each arc in order to better show the density of tokens along
contours. This multiscale description employs a total of 4,647 tokens distributed
across scales as follows: Scale range 0: 2335 tokens, 1: 1266, 2: 626, 3: 282, 4: 102,
5: 30, 6: 6 (Figure 6 displays a subset of these based on tightening the threshold on
token smoothness.) Overall computation time is approximately one second per token
on a Symbolics 3650 serial computer, or about 80 minutes for figure 6.

The major strengths and weaknesses of the grouping algorithm are evident in
this figure. First, note that performance is correct in the ideal situation. That is,
where the contour is relatively smooth, unbroken, and isolated from clutter, CURVE-
ELEMENT tokens are fit to the contour at intervals of roughly half an arc length.
These situations occur mostly at the smaller scale ranges.

At scale ranges 3 (6e) and above, disjoint contour fragments become near to one
another in relation to their lengths, and it is at these scales that the procedure for
selecting the support of larger scale CURVE-ELEMENTS becomes crucial. Note in
figures 6e and 6f that tokens are found corresponding to contours that cross one
another, including those of the prominent circles. Also, at these scales the fact that
tokens represent circular arcs becomes manifest in that the token description no longer
fits the original data precisely, but becomes somethmg of a smooth a,pproxnnatmn

At the largest scales some CURVE-ELEMENTS are asserted that do not correctly
correspond to human perception of curvilinear structure. Many of these arise from
the bridging of gaps between aligning contour fragments for which, if they appeared
in isolation, it would otherwise be appropriate to assert a gap-bridging token. A
weakness of the present grouping algorithm is therefore that it does not take into
account sufficient information about the local environment of potentially groupable
tokens. Although it is not visible in the illustration, many of these questionable
tokens are, however, betrayed by having a lesser smoothness parameter tha.n more

perceptually apparent contour fragments. _
A second shortcoming of the algorithm is indicated by the arrow in figure 6g. Here,
the contour is smooth at the smallest scales, roughly straight at a very large scale,
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s

Figure 6: (a) Original image (from [18]). (b) Finest scale CURVE-ELEMENT tokens (see
text). (c) through (h) CURVE-ELEMENTS at successive octave scale ranges. Circles
denote midpoint of circular arc models and indicate density of tokens asserted along
contours.
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but very wavy at an intermediate scale. The algorithm is not capable of detecting
emergent large scale curvilinear structure where a contour is very broken, jagged, or
wavy because every token assertion must be supported by tokens at the next smallest
scale range. At scale range 4 (6f) the indicated section of contour is fit acceptably by
no circular arc, and consequently no large scale token can be asserted at scale 5 (6g).

The strength of the gap-jumping component of the algorithm is exhibited in Figure
7. Note that the loop is broken at the smallest scales, yet large scale tokens cover
its entire length. Note also that contours at small or intermediate scales merge and
are described by single arcs at larger scales. (However, the onological issue by which
closely spaced parallel lines may be interpreted at larger scales as unitary curvilinear

events does merit further consideration.)

4.2 Tokens as Indicators of Significant Image Events

CURVE-ELEMENT tokens serve as useful units or chunks of information for image
analysis because they make explicit important image. structure that is only latent in
edge or line detector output. Information about the visual image may be accessed
either by querying the tokens directly or by selecting for further processing just those
tokens possessing certain properties.

Figure 8a displays a subset of CURVE-ELEMENT tokens appearing in figure 6 se-
lected on the basis of scale-normalized curvature: selected tokens have absolute value
of sn-curvature falling above a threshold. 8b shows the results of a similar selection
step, in which in addition to falling above a sn-curvature threshold, tokens must align
with at least one neighboring token along a common circle in order to be selected.
The selection of tokens in this way simplifies the task of establishing the presence and
locations of circles or partial circles in a complex image.

Figure 9 shows that the CURVE-ELEMENT token description of an image of hand-
written text reflects our perception of the slash through the word as a single coherent
entity. A single mouse click invokes a trivial program to remove from the blackboard
this “slash” token at the largest scale, plus all smaller scale tokens which support it,
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Figure 7: (a) Original image (from [21]). (b) Finest scale CURVE-ELEMENT tokens
(see text). (c) through (h) CURVE-ELEMENTS at successive octave scale ranges.
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Figure 8: (a) CURVE-ELEMENTS from figure 6f whose scale-normalized curvature lies
above a threshold value. (b) Tokens from 6f selected on the basis of scale-normalized-
curvature, smoothness, and cocircular alignment with a nearby token.
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leaving behind the (Scale 0) tokens shown in figure 9d. Note that no realistic spatial
filter would detect this line in the presence of the clutter of the surrounding lettering,
and the set of chain coded contours found by linking small scale detector outputs
would yield only an incoherent basketful of fragments.

5 Conclusion

A representation for curvilinear structure consisting of overlapping CURVE-ELEMENT
tokens denoting circular arc models constitutes a useful stage for intermediate level
visual processing because it strikes a good balance between simplicity, accuracy, ab-
straction, and richness. CURVE-ELEMENTS make explicit important aspects of image
structure in themselves, and they are of the right “grain size” to be combined in
simple ways into more complex structures. The assertion of tokens in an overlap-
ping fashion at multiple scales leads to richness: to a first approximation, a token is
available at the right location and scale to describe explicitly and exclusively every
section of contour; any of these could potentially play an important role in later visual
analysis such as queries, selection, or further grouping.

The grouping algorithm presented for computing CURVE-ELEMENTS achieves good

21

performance under the restriction that curvilinear structure identified must be rel-

atively smooth and free of very large gaps (relative to the extents of the contours
forming the gap). Crossings, Y-junctions, gently wavy contours, small to moderate
size gaps, and the presence of moderate clutter are all handled appropriately by the
algorithm in nearly all cases observed. Figures 6 through 9 offer representative re-
sults. Because of the algorithm’s neglect of certain cases, however, further work is
needed if CURVE-ELEMENT tokens are to be asserted correctly in images containing
dashed or dotted lines [1], jagged contours, or fuzzy (grey-level) contours. In these
cases it may be appropriate to combine grouping methods with other techniques such

as oriented linear or nonlinear filtering.
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Figure 9: (a) Original image. (b) CURVE-ELEMENT tokens across all scales, viewed in
oblique projection. (c) Circular arc tokens at Scale 0 remaining after removal of the
large scale token representing the slash, plus those tokens supporting it down through
successively smaller scales. '
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Appendix A: Spatial Proximity Measurement Functions

A function F assessing the alignment-affinity of two CURVE-ELEMENT tokens T3 and
T operates on the relative locations and orientations of the tokens, independent of
their curvatures. This function is engineered to approach the value 1.0 when the
tokens are either moderately near one another and cocircular or else very near one
another and parallel, but approach the value —1.0 when the tokens are moderately

near one another and not cocircular.

F(T3,Ts) = Fag(2F.(1 = FanFus) = 1)

where | v
Frt(T1, T2) = B(max(0, (*"D(T1, T2) — p13)), p14)
1 .
Fy= ;2 min(jey + aaf, (7 — Jor + azf))
See figure 10.
Fe = B(*"D(T1,T3), p15)
]
Fo= 2|"’
' s
Frn = 1 — B(max(0, (**D(T1, T2) — p16)), p17)
= (1B 12
Fu= (1234122 - |22 - 22
0 ifz>z
B(z,z0) ={ 1—az? ifz<®
a(z — zo)? otherwise

A function G assessing the degree to which two arcs lie on the same circle is
engineered to return a maximum value of 1 when two arcs are precisely cocircular in
their spatial proximity, relative orientation, and curvatures.

G(T1,T2) = p18Gn + p19Go + p20Ge
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where

Gn(Tl,Tz) = SUD(Ty, P) + S°D(T3, P)
See figure 11. )
Go(Th, T2) = min(|6 = B2l |5y — B2 — )
Ge(Th, T2) = |Aky 2| min(.1, |6; — 65])]
These functional forms were arrived at through ad-hoc experimentation to have

properties required for the CURVE-ELEMENT grouping algorithm, and alternative for-
mulations having similar behavior would be entirely appropriate.
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Figure 10: Geometry for alignment-affinity measure.
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]

Figure 11: Geometry for cocircularity measure.
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Appendix B: Values of Free Parameters

The following are values of the-free parameters of the perceptual salience criteria and
curve segment identification algorithm used in the current implementation.

parameter value

p1 1.0

' P2 9.0 :
P3 3 ‘:
P4 4 |
Ps 1
Pe 2.0
pr ;) t
ps 1 .0
po 8.0 :
P10 14.0
p11 3
P12 NG
P13 12.0
P14 6.0
P15 5.0
Pis 5
P17 1.5 ' ‘ . E
pis 2 ;
P19 5.0
P20 100.0

T TEeT T ™ e L ).
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