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Abstract This paper presentsan algorithm for labeling curvilinear structure at
multiple scales in line drawings and edge images Symbolic CURVE-ELEMENT
tokens residing in a spatially-indexed and scale-indexeddata structure denote
circular arcs fit to image data. Tokens are computed via a small-to-large scale

grouping procedure employing a “greedy”, best-first, strategy for choosing the
support of new tokens. The resulting image description is rich and redundantin
that a given segmentof image contour may be describedby multiple tokensat
different scales,and by more than one token at any given scale. This property
facilitates selection and characterizationof portions of the image based on local
CURVE-ELEMENT attributes.
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Labelingof
Curvilinear StructureAcross Scales

by Token Grouping

Abstract

This paperpresentsan algorithm for labeling curvilinearstructureat multiple
scalesin linedrawingsandedgeimages.SymbolicCURVE-ELEMENT tokensresidingin
a spatially-indexedandscale-indexeddatastructuredenotecircular arcsfit to image
data. Tokensarecomputedvia a small-to-largescalegroupj~gprocedureempj~.g_
a “greedy,” best-first,strategyfor choosingthesupportof newtokens.Theresulting
imagedescriptionis rich and redundantin that a given segmentof image contour
maybe describedby multiple tokensat differentscales,and by morethanonetoken
at anygivenscale.Thispropertyfacilit’atesselectionand characterizationof portions
of theimagebasedon local CURVE-ELEMENT attributes

1 Introduction

An importantclassof structureoccurringin imagestakesform asextendedcurvilinear
contoursthat appearas straight or gently curving lines. Localized edgeand line

detectorsperform initial measurementsof thesestructuresbut classicallyare best

suitedto detectingimage eventsmatchedto simple straightstep-likeor ridge-like

intensity profiles The organizationof local orientededgeand line assertionsinto

largerscaleentitiesis afl importantsteptoward identifyingsemanticallymeaningful

units reflectingobject boundarycontours,shadowedges,materialchanges,surface

markings,or otherphysicalprocessesthat giverise to curvilinearcontours.

This paperpresentsan algorithmfor labelingextendedcurvilinear structurein

termsof symbolicassertions,calledCURVE-ELEMENT tokens,that denoteposes(lo-

cationsand orientations)whereimagedatamaybe approximatedby a circulararc.

The assertionof circulararcsat different locationsand sizesconstitutesa usefulab-

stractionof curvilinearstructurefor a numberof reasons.A circular arcmodelis of

modestcomplexity,allowinggreaterprecisionof approximationthana straightline,

yet considerablysimpler than a splineor polynomial model. Circular arc CURVE-

ELEMENT tokens“glue together” collectionsof individual pixel-levelline elementsso
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2 LABELING OF CURVILINEAR STRUCTUREACROSSSCALES BY TOKEN GROUPING

that theymaybe treatedaswholes. Thesechunksmaybe assignedaggregateprop-

ertiesof their own, suchas curvatureand smoothness,that summarizethe original

information,and CURVE-ELEMENT tokensmaybequeried,polled, andselectedbased

on their individual propertiesand theirspatialrelationships.

As shownin figure 1, good circulararc approximatingsegmentscanoverlapone

another. Becausethe goal of the presentcomputationalstageis to makeexplicit

this typeof imagestructurewhereverit occursin an image,weembracethe notion

of overlapand allow a givencontoursegmentin an imagein generalto supportthe

assertionof many CURVE-ELEMENT tokens. Accordingly, CURVE-ELEMENT tokens

aremaintainedat multiple scalesof approximatelyoctave(factorof 2) intervals in

magnification,andat spatial intervalsalong a contourequivalentto approximately

half their lengths Thetargetrepresentationthusresemblesthat of Lowe [16]

Figure1: Circular arcapproximationsto a contouroverlapone another.

Previousapproachesto the identificationof curvilinearstructurein imagesare

primarily of four types (1) global histogrammethods, (2) iterative optimization

methods,(3) methodsinvolving curvetracing, curvesmoothing,and parameterized

curvefitting; and (4) groupingmethods.

Global histogrammethodsmaybeconsideredvariantson theHough Transform

[4, 33]. The shortcomingsof thesemethodsfor detectingimpreciselymodeleddata

• (e.g. arcsthat don’t form aperfectcircle)in thepresenceofnoisearewell documented
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(see[14]). Spatially localized Hough Transforms have, however, been used successfully

in conjunction with a line segmentgroupingstrategy[28].

Existingiterativeoptimizationmethods[34, 26, 38] operateatasingle (finest)spa-

tial scale.Local assertionsare influencedby spatiallydistal informationthroughiter-

ation of a local propagationstep. Certaintypesof imagestructure,suchassmoothly

curvingcontours,becomeaccentuatedasspecifiedby an optimizationfunction,and

a..secondstep suchas curve tracing or snake-likeparameterizedcurve fitting [15]

is neededto recovercurves asindividuatedentities. Theseprocessessacrificeself-

similarity acrossscales(doesthe sameoutput obtain when the original image is

simply magnifiedin size?)becausetheoptimizationfunctionis expressedin termsof
targetspatialstructureat only thefinest scale.

A numberof previousmethodsrely on an initial curvetracingstepto link strings

of pixels into chain-codedcontours Then,curvesmoothingor parameterizedcurve

fitting techniquesareusedto obtain lowerresolutiondescriptionsor symboliccharac-

terizationsof thecurvedata[3, 12, 13, 17, 19, 21, 24, 25,27, 31]. Thesemethodshave

revealedthat salientintermediateand largescalecurvilinearstructureis often only
tenuouslyreflectedin theset of purely local pixel neighborrelations,andcan there-

fore be di~cultto recoverfrom curvesgeneratedby local pixel linking. It becomes

necessaryto devisemethodsto breakchain-codedcurvesat potentially significant

pointssuchas inflectionsand curvatureextrema[3, 16, 19, 31], and to link initially •

unrelatedcurveson the basis of spatialproximity [16, 21]. Theselatter techniques

leadto groupingmethods.

Tokengroupingmethodsfor identifying and labelingsignificant imagestructure

playedaprominentrolein thePrimalSketchtheoryof Marr [20]. AlthoughMarr and

his colleaguesconstructedillustrative demonstrationssuggestingthat spatialevents

suchasextendedcontoursandblobs couldbecomputedby tokengrouping,thetech-

niqueswereneverbroughtto conclusiveresults.Sincethen,anumberof investigators

havedevelopedtechniquesfor small-to-largescaleperceptualgroupingof chain-coded

curves[21, 23], line segments[5, 16, 28, 32, 35] and parameterizedcurvesegments

[11, 16]. Theseinvestigators’groupingrules rely primarily on pairwiselinking and
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4 LABELING OF CURVILINEAR STRUCTUREACROSS SCALES BY TOKEN GROUPING

mergingoftheirrespectiveelementsbasedon proximity andalignment.Undergroup-

ing approaches,curvilinearstructurecanbeidentified by purely spatiallylocal com-

putationsevenwhenit arisesfrom topologicallydisparateimagecurves.

Key to anytokengroupingapproachis meansfor decidingwhich subsetsof tokens

at one scaleareto aggregatedinto newtokensata largerscale.This paperreportsa

new greedyalgorithmthat, startingfrom an initial seedtoken,addstokensone-by-

oneto thesupportsetof sufficientlyaligning tokensfalling in theneighborhoodof the

seed,until an adaptivethresholdon alignmentis exceeded.This “greedy” algorithm

lies at the heartof a relatively simpleand conservativeone-passgrouping strategy

basedon alignmentof the arcsrepresentedby nearbytokens. Underthis strategy,

largerscaleCURVE-ELEMENT tokens: (1) performa smoothingof theimagecontour,

(2) bridgesmall gapsin imagedata,and (3) continuea circulararc segmentin the

presenceof extraneouscrossingcontours. Thegroupingalgorithm is supportedby

a spatiallyand scaleindexeddatastructurecalledthe Scale-SpaceBlackboard. This

datastructureis importantbecausetheability to accesstokenson thebasisof their

locations and sizessimplifies computationsconcerningspatial relationshipsamong

imageevents,andimprovestheefficiencyof computationson local neighborhoods.

Thepresentwork makesthefollowing contributions:First, asmentionedit offers

a newgroupingprocedureattackingin anovelwaytheproblemof choosingthe sup-

port for new,largerscale,tokens. Second,thedefinition of CURVE-ELEMENT tokens

plus their organizationon the Scale-SpaceBlackboardunifies severaladvantageous

concepts:(1) a spatiallyandscale-indexeddatastructureis usedto organizedata;(2)

computationis hierarchicalandlocal with respectto spatialscale,makingit amenable

to implementationinparallelhardware;(3) tokenassertionsat all scalesarepreserved

andmadeavailablefor latercomputation;(4) a singletypeof descriptorlabelsboth

curvingarcsandline segments(arcswith curvature= 0); (5) tokensareabstracten-

titiescapableof maintainingagreatdealof informationincludingpointersor links to

neighbor,ancestor,and descendenttokens;(6) self-similarityacrossscalesis achieved

by expressingspatialrelationshipsin termsthatnormalizefor scale.Thiswork draws

from a previouslyreportedmethodfor multiscalegrouping of tokensrepresenting
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primitive figure/groundboundariesarisingfrom binary shapeimages[30]. However,

thepresentpapersignificantly departsfrom thepreviouswork in two ways: (1) the

presentCURVE-ELEMENT tokenshavedifferent interpretations,include a curvature

parameter,arid aresuitablefor line drawingsor connectedcurvesderivedfrom edge

aridridgedetectoroutputs,and(2) thegroupingrulesincorporateagreedyalgorithm

andarethereforedifferent in function,simpler, andmoreclearlymotivated.

2 Tools: CURVE-ELEMENT Tokensin Scale-Space

TheCURVE-ELEMENTdescriptionof an imageconsistsof a setof tokensscatteredin

a threedimensionalspaceconsistingof two spatialdimensionsplus onescaledimen-

sion The constructionof suchadescription,aswell as its subsequentusefor image
interpretation,demandefficient andeffectivetools for computinginformationabout

the relative locations,orientations,and sizesof arcs representedby tokens,and for

accessingtokenson thesebases.

2.1 Self-Similarity AcrossScales

Self-similarity acrossscales is a propertyby which informationabout spatial con-

figurations, suchasthe arrangementof markson this page,may be thsjoined from

informationabout the absolutesizeof their appearancein an image. For example,
figure 2ai depictsan arrangementof markscomprisinga circulararc. A description

of this arcthat doesnotpossessself-similaritywith respectto scaleis curvature,be-
causewhenthearcis magnifiedin size,theradiusof curvaturechanges.A property

that doesremaininvariantwith respectto magnificationis angularextent,which is

proportionalto the arc’s lengthdivided by (normalizedby) theradiusof curvature

Objects’identitiesareinvariantwith respectto theirspatialmagnificationin images.

That arcsof like angularextentappearmoresimilar thanarcsof iike curvaturesup-

ports the VIeW that ~lf-similarity acrossscalesis a desirablepropertyfór ~ v~s~i~f

representation.
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Figure 2: Scale-normalizedmeasuresof curvatureand distanceare invariant with
respectto spatialmagnification.

For this reason,in the presentwork information about metric curvatureis ex-

pressedas a scale-normalizedcurvature, (or sn-curvature),which is equivalentto

angularextent. By convention,positive sn-curvatureis interpretedas curving in

the clockwisedirectionwhile negativesn-curvaturemeanscounterclockwiseturning.

Similarly, scale-normalizeddistanceis employedasameasureof distancebetweentwo

spatialeventsthatnormalizesfor theabsolutesizesof theeventsandtherebyachieves

invariancewith respectto absolutemagnification.

• Thesescale-normalizedmeasuresarefacilitatedby, following Witkin [36], gradu-

ating thescaledimensionlogarithmicallyso that equalintervalscorrespondto equal

amountsof spatialmagnification.Thus, a spatialmagnificationm is equivalentto a

translations in thescaledimension:

s=Alogm, (1)

where A is a constant.Then,the scale-normalizedcurvature,~ of a circular arc

segmentwhosescaleis s is given by

(2)

The scale-normalizeddistancebetweentwo spatialeventsoccurringat scales~i and
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s~,respectively, and separatedby a distanceD, is givenby

.SUD = ~(e~+ e~ (3)

Furtherjustification for thesedefinitionsis providedin [30].

2.2 CURVE-ELEMENT Tokens

A CURVE-ELEMENTtokenpossessessix propertiesof primaryinterest:(1) x-location,

(2) y-location, (3) orientation,(4) scaleor size, (5) scale-normaiizedcurvature,(6)

smoothness.Seefigure 3. To expeditecertaincomputationsit is alsousefulto cache

within eachtokenpointersto othertokenssuchasnearbytokens,supportingtokens,

andthenearestneighboron eachend

CURVE.ELEMENT toLen

1: ~6

Figure3: A CURVE-ELEMENT tokenis a packetof informationabouta circulararc.
Thetokenin (b) is considersmootherthanthetokenin (c) becauseits supportfalls
within a narrowerwindow.

Thescales of•a tokenisthelocationin thescaledimensioncorrespondingto. the •

tokens’ arclength 1,

s=Alog(./_), (4)
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8 LABELING OF CURVILINEAR STRUCTUREACROSSSCALES BY TOKEN GROUPING

where 1~is somedistanceassigneds = 0.

Because a CURVE-ELEMENT token assertsa circular arc without regardto the

figure/groundrelationshipof the regionson eithersideof thearc, eachtokenwith
orientation0 andsn-curvatureSfl.,~is equivalentto atokenwith orientation6+ir and

sn-curvature(~sfl~), and all computationsmust accordwith this 1800 symmetry

propertyof CURVE-ELEMENT tokens.

The smoothnessof a CURVE-ELEMENT tokenis a statementaboutthe precision

to which the arc model fits the underlying image data. Smoothnessis expressed

as a distancein the scaledimension,equivalentto asking, down to what scaleof

tokensdoesthesupportofthearcfall within apredeterminedscale-normalizedspatial

distance~Dsm from the arc?For anarcR of length 1 fit to a setof (dimensionless)

points,p,, smoothnessH becomes

H = _logBniai~~P), (5)

whereD measuresthe (absolute)distancebetweenthe arc anda point, and B is a

constant. This is a self-similarmeasure,so the samesmoothnessis assignedto an

arc with respectto a given set of points regardlessof the spatialmagnificationof

thesystem. Dueto thelogarithm,an arc whosesupportfits preciselyis considered

infinitely smooth

2.3 Scale-SpaceBlackboard

CURVE-ELEMENT tokensaremaintainedin a datastructurecalled the Scale-Space

Blackboardwhich preservesthe pictorial, spatial, organizationof the original two-

dimensionalimage Tokensin theScale-SpaceBlackboardareadditionallyorganized

by scale In practice,this datastructureconsistsof astackof two-dimensionalarrays,

eachelementof which is a list of tokensfailing within the spatialdomainof that bin,

• ~hilè eachlevel in the stackspansan octaverangein thes~aiedin emion.

A typical operationon theScale-SpaceBlackboardis, “Deliver all tokenswithin

scale-normalizeddistanceSUD of thetokenat (x,y, s).” Thepropertyof self-similarity
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acrossscalesmaybeusedto advantageby quantizingspace,at eachlevel in theScale-

SpaceBlackboard,with a tesselationsizeproportionalto a constantscale-normalized

distance.This resultsin coarserquantizationat largerscales,andthedatastructure

thereforeresemblesa pyramidarchitecture[29].

The ability to index information on the basis of spatial location and scalecon-

tributessubstantiallyto the efficiencyof local grouping algorithms. The combina-

torics of testingsubsetsof tokensfor, say,sufficient alignment,grows prohibitively

quickly with the numberof tokensdescribingthe imageunlessunlikely candidate

subsetscanbeexcludeda priori througha spatialselectionfacility suchasprovided

by theScale-SpaceBlackboard.

3 ComputingCURVE-ELEMENT Tokens

3.1 Placementof SmallestScaleTokens

CURvE-ELEMENT tokensat the finest, initial, scalemay be assertedby any of a
varietyof methods,for which thesubsequentgroupingalgorithmworksequivalently.

The main requirementsare that tokensfalling along a commoncontouralign with

one anotherreasonablywell, and that they areareplacedat appropriateintervals

along imagecurves. The representationis designedfor tokens’ arcsto overlapone

anotherby approximately50%of their lengths.

Theintial tokensfor figures 6 and9 weregeneratedby first thinning theoriginal

imageto 4-connectivity,thencreatingchain-linkedcurvesegmentsby tracingcurves

(without particularregardto thebehaviorat junctions), andfinally placingCURVE-

ELEMENT tokensat intervalsof everyfour pixels along the curvesegments.Token

location, orientation,and sn-curvaturewere determinedby leastsquaresfit to nine

pixels, thesebeingthecenterpixel and thenearestfour in either direction.

Forfitting a circulararctoa setof points,weemployasimpletwo-stageprocedure.

Bookstein’s [6] efficient methodfor fitting a circle to points works well for points

•forming deeparcs (>.-.‘90°), but breaksdownfor noisy shailow arcs. Conversely,

shallow arcsareadequatelyfit by a parabolicmodel. Therefore,we first performa
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10 LABELING OF CURVILINEAR STRUCTUREACROSSSCALES BY TOKEN GROUPING

leastsquaresparabolic fit throughthecentroidof thepoints;if thearc is sufficiently

shallow,thesefitting parametersareadoptedfor theCURVE-ELEMENTtoken; if not,

poseandcurvatureparameters.from Bookstein’smethodareused.

• An alternativemethodfor computingfinestscaleCURVE-ELEMENTSwasemployed

for figure 7. This involved detectingintensityridgesby filtering the original image

with a cosinephaseElementaryGaborFilter (seee.g. [10]) at 22.5° orientationin-

tervals,performingnon-maximumsuppression,thenthresholdingat a thresholdset

automaticallyby meanssimilarto thatdescribedby Canny[8]. A 0-curvatureCURVE-

ELEMENT tokencouldthenbeplacedat everysurvivingpixel with orientationequal

to that of themoststronglyrespondingfilter. To pruneexcesstokensuntil neighbor-
ing tokenswere spacedat an appropriatescale-normalizeddistance,a subsampling

procedurewasusedsimilar to that describedin section3 3

3.2 Small-to-LargeScaleGrouping

Thecrux of thecomputationlies in the groupingoperationby whicha setof CURVE-

ELEMENT tokensat one scalemaygive rise to a new CURVE-ELEMENT token at a

scaleapproximatelyone octavelargerin size. The ideal caseis shownin figure 4a.

Here, tokensT1,T2,andT~occurringat, say,scales = 2, arewell aligned with one

anotherandmaysupporttheassertionof token2’4 occurringat scales = 3. Thepose
andcurvatureof tokenT4 aredeterminedby leastsquaresfit, asdescribedabove,to

pointssampledalongthelengthsof the arcsrepresentedby its supportingtokens.

While this idealcasedoesoccuroften in realimages,therealchallengesto group-

ing methodsare found in more complexgeometricconfigurations. The remaining

examplesof figure 4 presenta numberof other,more difficult, situationsthat may

be observedto occur in imagespossessingcurvilinearstructurereadily apparentto

humanobservers.Theseincludecrossingcontours,gaps,tangentialjunctionsor

junctions,and surroundingclutter. 0 0 ~ •

Theproblemfacedby a tokengroupingapproachmaybeviewedin thefollowing

way: supposewe adopt a strategyanalogousto the ideal case, that is, a fitting

XEROX PARC, EDL-92-7, MAY 1992



LABELING OF CURVILINEAR STRUCTUREACROSS SCALES BY TOKEN GROUPING 11

Figure 4: (a) In the ideal CURVE-ELEMENT groupingcase,all of the tokensin the
vicinity of a “seed” token (1’2) contribute points from which the parameters of a
larger scaleCURVE-ELEMENT can becomputed More difficult situationsarisewhen
contourscross one another (b), havegaps (c), form Y-junctions (d), or are found
amongthe clutter of nearbycontours(e).

algorithm will computearc parametersfor a token at some larger scalebasedon

points derivedfrom tokensoccurringat asmallerscalerange. Then,which smaller

scaletokensareto serveassupport (contributepointsfor fitting) for eachlargerscale

token? Figure 5 illustratesthe issuefor situation4d. Figure Sb demonstratesthat

fitting an arcto all of the CURVE-ELEMENTSin aspatialneighborhoodcan result in

an incorrectassertionabout thelarger scalecurvilinearstructure.We are led to the

strategyof selectingthe supportfor new,largerscale,CURVE-ELEMENTSby choosing

amongsubsetsof smallerscaletokens.

If at least two smaller scaletokensare requiredto support a larger scaletoken,

thencombinatorially,E~=2( ) subsetsof n tokensmaybeconstructed.Figure 5c

showsthe twenty-sixarcsresultingfrom fits to points derivedfrom all possiblesuch

subsetsof atleast two of thefive tokensin figure 5a. A suitablecriterionfor selecting

the good arcs,that is, the arcsthat agreewell with their support andcapturethe

larger scalecurvilinearstructure,is offeredby the smoothnessmeasurepresentedin

b
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12 LABELING OF CURVILINEAR STRUCTUREACROSSSCALES BY TOKEN GROUPING

Figure 5: (a) Five CURVE-ELEMENT tokens. (b) The least-squares arc fit to all of
these tokens. (c) The 26 arc fits to subsetsof at least two tokens. (d) The two arcs
from (c) havingthegreatestsmoothnessparameter.

section 2.2. This is illustrated in figure 5d, which displays just those arcs in figure 5c
whose smoothness fails above a threshold.

Thus the goal of CIRCULAR-ARC token grouping is to efficiently identify collections

of tokens that yield larger scale tokens of high smoothness when a circular arc fit

is made. For the bulk of the small-to-largescale token grouping operations, this

can be accomplished by an algorithm based on the following strategy: Each token

occurring in a given scale range serves as a seed that attempts to recruit nearby

CURVE-ELEMENTSto supporta token approximatelyoneoctavelargerin scale.The

algorithmis “greedy” in that nearbytokensarerecruitedone-by-one,bestfirst, on the

basisof their contributionto the smoothnessof the larger scalearc. More formally,

For eachseedtokenT~:

‘Throughoutthe paperfree parametersof the computationsuch as threshold~are denotedby
thesymbol,p. All reportedresultsemployedthesamefixed settingsfor theseconstants,the choices
for whichare presentedin Appendix B.
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1. Initialize the variables,support-list and potential-recruit-pool.Support-
list is thesetof tokensto whichthelargerscalearcwill be fit. Potential-
recruit-pool is a set of-tokensT5 that are eligible to participatewith
seedtokenT1 in the supportof a largerscaletoken. To be includedin
the potential-recruit-pool,a token must be in the same scale range as
T~,it must be locatedwithin a threshold scale-normalized distance of
the seedtoken which is approximatelyequalto a tokens’ arc length,
andit must fall above a threshold measure of spatial relationship with
respectto T~,called alignment affinity, and denoted F(T1,7’,). Two
tokens’ alignmentaffln~tyis largewhen theyare nearto oneanother
andcocircular. Ourparticularmathematicalexpressionfor this relation
is presentedin AppendixA.’

support-list~— {T~}
potential-recruit-pool~— {T~: Is(T~)— s(T~< p1

AND SflD(T~,7’,)<P2

AND F(2~,T~)> p~}

2. Attempt to recruit first the two tokens in the potential-recruit-pool
that are nearestto the seedtoken on eachend(thesearecalled the
forward-neighbortoken,~ andthe rearward-neighbortoken,~

Let h0 be the smoothnessof the circular arc fitting the tokens,
T~,~ and ~

if ho>p4
thensupport-list~— {T1,T1,f~,T1,~~}

0 else support-list~— {T~}

3. Iteratively recruit the best candidatetokenfrom potential-recruit-list
until thesmoothnessof theresultingarcfallsbelowanadaptivethresh-
old, o’

3a. Initialize o.
if ho>p4

0 then.o ~— max(p5, p6ho)
else a4—O
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14 LABELING OF CURVILINEAR STRUCTUREACROSSSCALES BY. TOKEN GROUPING

3b. For eachtoken T5 in the potential-recruit-pooland not already in
support-list,measurethesmoothnessh1 resulting for the circular arc fit
to thetokensthat are-alreadymembersof support-list,plus tokenT2.
Set hbest4— max(h1),andset thevariableTbe3t to be the corresponding
best-fittingtoken.

3c. Eitheracceptthebest-fittingtokenandcontinueaddingto support-list,
or else exit.

if hbest� ~,

thensupport-list~— {T~S~} Usupport-list
0 4— max(ps,P6libest)
proceedto stepSb.

• else proceedto step.~.

4 Assign largerscaletokenparametersbasedon leastsquaresfit to the
tokensin support-list,asdescnbedinsection3 1 Assigntokensmooth-
nessasdescribedin section2.2, andaddto theScale-SpaceBlackboard
all tokenswhosesmoothnessexceedsa thresholdvalueP7.

Theeffect of this algorithmis to recruit tokensthat lie alonga commoncontour.

If thelocal contouris fit bya circulararcveryprecisely,thenthethresholdo~will hold

potential recruitsto a tight tolerance. If the arc forms a less thanperfect circular

arc, moreslop is allowedin thesupporttokensthatcanbe recruitedinto support-list

• Theprocedureis first carriedout for seedtokensin thescalerange,s = 0, deliv-

ering tokensin thescalerange.s = 1, or at approximatelytwicethesizeof theinitial

seedCURVE-ELEMENTS. After a subsamplingstep, describedbelow, thesetokensin

turn give rise to tokensat scales = 2, and so forth. The groupingstepis spatially

local and maybe carriedout acrossall seedtokensat a givenscalerangein parallel.

A second,supplementary,mechanismfor introducinglargerscaleCURVE-ELEMENTS

is basedon bridginggapsbetweenalignedtokens Any pair oftokens1’, andT3 meet-

ing thefollowing conditionsis alsoallowedto spawnanewtoken: (1) s(Tj)—s(Tj)I<

P8 (that is, T~andT~are in the samescalerange); (2) p~<~D(T~,T1) < Pio; (3)

G(T~,T~)> Pu (G is a measurefor thedegreeto which two arcslie on thesamecircle

(seeAppendix A), (4) No othertokenhesbetweenandin alignmentwith 1’, and 2’,
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LABELING OF CURVILINEAR STRUCTUREACROSS SCALES BY TOKEN GROUPING 15

Theseconditionsarespatiallylocal andthedetectionofqualified “gap-bridging” pairs

is facilitatedby thespatial indexingpropertiesof the Scale-SpaceBlackboard. The

resulting CURVE-ELEMENTSareassertedon the Scale-SpaceBlackboardalongwith

thosefoundby theprimarygroupingmechanism,andthecirculararc parametersare

determinedas usualby leastsquaresfit, in this casetherebeing only two support

tokens.

3.3 SubsamplingLarger ScaleTokens

Becausea larger scaletokenis spawnedat eachseedtoken, the resultof theabove

procedureleaveslargerscaletokensmoredenselypackedthanthetargetS0%overlap

of neighboringlike-scaleCURVE-ELEMENTSalongthelengthof a contour Therefore,

thefollowing procedureis usedto subsampletokens

1. For eachlargerscaletoken,computea redundancy-costbasedon the
degreeof overlapwith and alignment with its forward-neighborand
rearward-neighbortokens.

2. Remove from the Scale-Space Blackboard every token whose redundan-
cy-costis greaterthanthat of both its forward-neighborand rearward-

• neighbor,and greaterthan a thresholdPi2.

3. Proceedto Step1., andrepeattheprocedureuntil no tokenis removed
from theScale-SpaceBlackboardat step2.

Dueto subsarnpling,eachoctaverangein theScale-SpaceBlackboardwill contain

approximatelyhalf asmanytokensasthenext smallestscalerange.

4 Results

4.1 Performance 0 • 00

Figure6 presentsCURVE-ELEMENTSfoundby thegroupingprocedurefor a line draw-

ing including three closed circular contours and many winding paths [18]. At each
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16 LABELING OF CURVILINEAR STRUCTUREACROSSSCALES BY TOKEN GROUPING

scalerange,tokensaredepictedby thecirculararc they represent. A small circle is

drawnat themidpoint of eacharcin orderto bettershowthedensityof tokensalong

contours. This multisca.le description employs a total of 4,647 tokensdistributed

across scales as follows: Scale range 0: 2335 tokens, 1: 1266, 2: 626, 3: 282, 4: 102,

5: 30, 6: 6 (Figure 6 displays a subset of these based on tightening the threshold on

token smoothness.) Overall computation time is approximately one second per token

on a Symbolics3650 serialcomputer,or about 80 minutes for figure 6.

The major strengthsand weaknessesof the grouping algorithm areevidentin

this figure. First, note that performanceis correct in the ideal situation. That is,

wherethecontouris relatively smooth,unbroken,andisolatedfrom clutter, CURVE-

ELEMENT tokensare fit to the contourat intervalsof roughly half an arc length

Thesesituationsoccurmostlyat thesmallerscaleranges

At scaleranges3 (6e) andabove,disjoint contourfragmentsbecomenearto one

anotherin relationto their lengths,andit is at thesescalesthat the procedurefor

selectingthe support of larger scaleCURVE-ELEMENTS becomescrucial. Note in

figures 6e and 6f that tokensarefound correspondingto contoursthat crossone

another,including thoseof theprominentcircles. Also, at thesescalesthefact that

tokensrepresentcirculararcsbecomesmanifestin that thetokendescriptionno longer

fits theoriginal dataprecisely,but becomessomethingof a smoothapproximation.

At the largestscalessomeCURVE-ELEMENTS are assertedthat do not correctly

correspondto humanperceptionof curvilinearstructure. Manyof thesearisefrom

thebridgingof gapsbetweenaligning contourfragmentsfor which, if they appeared

in isolation, it would otherwisebe appropriateto asserta gap-bridgingtoken. A

weaknessof the presentgrouping algorithm is thereforethat it doesnot takeinto

accountsufficient informationaboutthe local environmentof potentiallygroupable

tokens. Although it is not visible in the illustration, manyof thesequestionable

tokensare,however,betrayedby havinga lessersmoothnessparameterthanmore

perceptuallyapparentcontourfragments. 0 0

A secondshortcomingof thealgorithmis indicatedby thearrowin figure6g. Here,

thecontouris smoothat thesmallestscales,roughly straightat a very largescale,

XEROX PARC, EDL-92-7, MAY 1992



LABELING OF CURVILINEAR STRUCTUREACROSSSCALES BY TOKEN GROUPING 17

Figure 6: (a) Originalimage(from [18]). (b)FinestscaleCURVE-ELEMENT tokens(see
text). (c) through(h) CURVE-ELEMENTS at successiveoctavescaleranges. Circles
denotemidpoint of circular arcmodelsandindicatedensityof tokensassertedalong
contours. -

b

d

f

Ii

a

c

e

g
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18 LABELING OF CURVILINEAR STRUCTUREACROSSSCALES BY TOKEN GROUPING

but very wavyat an intermediatescale.The algorithm is not capableof detecting

emergentlargescalecurvilinearstructurewherea contouris verybroken,jagged,or

wavybecauseeverytokenassertionmustbesupportedby tokensat thenextsmallest

scalerange.At scalerange4 (6f) theindicatedsectionofcontouris fit acceptablyby

no circulararc, and consequentlyno largescaletokencanbeassertedat scale5 (6g).

Thestrengthof thegap-jumpingcomponentof thealgorithmis exhibitedin Figure

7. Note that the loop is brokenat thesmallestscales,yet largescaletokenscover

its entirelength. Notealsothat contoursat small or intermediatescalesmergeand

aredescribedby singlearcsat largerscales.(However,theonologicalissueby which

closelyspacedparallellinesmaybe interpretedat largerscalesasunitarycurvilinear

eventsdoesmerit furtherconsideration.)

4.2 Tokensas Indicatorsof SignificantImageEvents 0

CURVE-ELEMENT tokensserveas useful units or chunksof information for image

analysisbecausetheymakeexplicit importantimagestructurethat is only latentin

edgeor line detectoroutput. Information about thevisual imagemay be accessed

eitherby queryingthetokensdirectly orby selectingfor furtherprocessingjust those

tokenspossessingcertainproperties.

Figure8a displaysa subsetof CURVE-ELEMENT tokensappearingin figure 6 se-

lectedon thebasisof scale-normalizedcurvature:selectedtokenshaveabsolutevalue

of sn-curvaturefalling abovea threshold.8b showsthe resultsof a similar selection

step,in which in additionto falling aboveasn-curvaturethreshold,tokensmustalign

with at leastoneneighboringtokenalonga commoncircle in orderto be selected.

Theselectionof tokensin this waysimplifiesthetaskof establishingthepresenceand

locationsof circlesor partialcirclesin acompleximage.

Figure 9 showsthat the CURVE-ELEMENT tokendescriptionof an imageof hand-
writtentext reflectsourperceptionof theslashthroughtheword asasingle coherent

entity. A singlemouseclick invokesa trivial programto removefrom theblackboard

this “slash” tokenat thelargestscale,plus all smallerscaletokenswhich supportit,
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Figure 7: (a) Original image(from [21]). (b) FinestscaleCURVE-ELEMENT tokens
(seetext). (c) through(h) CURVE-ELEMENTS at successiveoctavescaleranges.
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a

C
b

Figure8: (a) CURVE-ELEMENTSfrom figure 6f whosescale-normalizedcurvaturelies
abovea thresholdvalue. (b) Tokensfrom 6f selectedon thebasisof scaie-nonnalized-
curvature, smoothness, and cocircular alignment with a nearby token.
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leaving behind the (Scale 0) tokens shown in figure 9d. Note that no realisticspatial

filter would detect this line in the presence of the clutterof thesurroundinglettering,

and the set of chain coded contoursfound by linking small scale detector outputs

would yield only an incoherent basketful of fragments.

~ Conclusion 0

A representationfor curvilinearstructureconsistingof overlappingCURVE-ELEMENT

tokensdenotingcircular arc modelsconstitutesa usefulstagefor intermediatelevel

visualprocessingbecauseit strikesa good balancebetweensimplicity, accuracy,ab-

straction,andrichness CURVE-ELEMENTSmakeexplicit importantaspectsof image

structurein themselves,and they areof the right “grain size” to be combinedin

simple ways into morecomplexstructures The assertionof tokensin an overlap-

ping fashion at multiple scalesleadsto richness:to a first approximation,a tokenis

availableat the right location and scaleto describeexplicitly andexclusively every

sectionof contour;anyof thesecouldpotentiallyplayanimportantrolein latervisual

analysissuchas queries,selection,or furthergrouping.

Thegroupingalgorithmpresentedfor computingCURVE-ELEMENTSachievesgood

performanceunder the restriction that curvilinear structureidentified must be rel-

atively smooth and free of very largegaps (relativeto the extentsof the contours

forming the gap). Crossings,Y-junctions, gently wavy contours,small to moderate

sizegaps,andthe presenceof moderateclutter are all handledappropriatelyby the

algorithmin nearly all casesobserved.Figures 6 through 9 offer representativere-

sults. Becauseof the algorithm’sneglectof certaincases,however,further work is

neededif CURVE-ELEMENT tokensare to be assertedcorrectly in imagescontaining

dashedor dotted lines [1], jaggedcontours,or fuzzy (grey-level) contours. In these

casesit maybeappropriateto combinegroupingmethodswith othertechniquessuch

as orientedlinear or nonlinearfiltering.. 0.
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Figure9: (a) Originalimage. (b) CURVE-ELEMENTtokensacrossall scales,viewedin
obliqueprojection. (c) Circulararc tokensat Scale0 remainingafterremovalof the
largescaletokenrepresentingtheslash,plusthosetokenssupportingit downthrough
successivelysmallerscales.
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Appendix A: Spatial Proximity MeasurementFunctions

A functionF assessingthe alignment-affinityof two CURVE-ELEMENT tokensT1 and

1’2 operateson therelative locationsand orientationsof thetokens,independentof

their curvatures. This function is engineeredto approachthe value 1.0 when the

tokensare eithermoderatelynearone anotherand cocircularor elsevery nearone

anotherand parallel,but approachthe value—1.0 whenthetokensaremoderately

nearoneanotherandnot cocircular.

F(T1,T2)= F~1(2F~(1— F~~FSS)— 1)

where

- F~1(T1,T2) = B(max(0, (~D(T1,1’2) — p13)), p14)

F~(T1,2’2) =1—(F~1(1 — F~)+ F~,,F~2)

F~1= !2min(jai + ~2I, (ir — Iai + c~2D)

Seefigure 10.

= B(~D(Ti,T2),pis)

F~2=2j!J

~ = 1 — B(max(0,(~‘D(T1,T2) — p16)), p17)

0 ifx>x0
B(z,xo)= 1—ax2 ifx<~

a(x — x0)2 otherwise

A function G assessingthe degreeto which two arcs lie on the samecircle is

engineeredto returna maximumvalueof 1 whentwo arcsarepreciselycocircularin

their spatial proximity, relative orientation, and curvatures.

G(T1,1’2) = p18G~+ pigG0 + p2oG~
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where

G~(T1,1’2) = ~D(T1, F) + SflD(T2,F)

Seefigurell.
G0(T1,1’2) = min(Jfli — $2!, Ith — 132 — ~I)

G~(T1,T2)= f~ici,2Iniin(.1,IOi — 92!)!

Thesefunctionalforms were arrivedat throughad-hocexperimentationto have

propertiesrequiredfor theCURVE-ELEMENTgroupingalgorithm,andalternativefor-

inulationshavingsimilar behaviorwould beentirelyappropriate.
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Figure10: Geometryfor alignment-affinitymeasure.

Figure11: Geometryfor cocircularitymeasure.

D
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AppendixB: Valuesof FreeParameters

The following arevaluesofthe-freeparametersof theperceptualsaliencecriteriaand

curvesegmentidentificationalgorithmusedin thecurrentimplementation.

parameter value

Pi 1.0
P2 9.0
f~3 ~3 0
f~4 .4
p5 .1
P6 2.0

.5 0

P8 1.0
~J9 8.0
Pio 14.0
Pu .3
P12 .7 0

P13 12.0
P14 6.0
P15 5.0
P16 .5
P17 1.5
P18 .2
P19 5.0
P20 100.0
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