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Abstract—Closed or nearly closed regions are an important form of perceptual structure arising both in natural imagery and in many
forms of human-created imagery including sketches, line art, graphics, and formal drawings. This paper presents an effective algorithm
especially suited for finding perceptually salient, compact closed region structure in hand-drawn sketches and line art. We start with a
graph of curvilinear fragments whose proximal endpoints form junctions. The key problem is to manage the search of possible path
continuations through junctions in an effort to find paths satisfying global criteria for closure and figural salience. We identify constraints
particular to this domain for ranking path continuations through junctions, based on observations of the ways that junctions arise in line
drawings. In particular, we delineate the roles of the principle of good continuation versus maximally turning paths. Best-first
bidirectional search checks for the cleanest, most obvious paths first, then reverts to more exhaustive search to find paths cluttered by
blind alleys. Results are demonstrated on line drawings from several sources including line art, engineering drawings, sketches on
whiteboards, as well as contours from photographic imagery.

Index Terms—Contour closure, closed path, perceptual organization, Gestalt laws, sketch interpretation, line art analysis, graphics

recognition.
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1 INTRODUCTION

THE Gestalt laws of perception have long recognized
figural closure as one of the primary perceptual phenom-

ena exploited by the human visual system. The detection of
closure is fast, automatic, and seemingly effortless, and its
role in building intermediate level descriptions is well-
recognized [5], [7], [8], [10], [13]. The conventional explana-
tion for why a visual system should seek closed or nearly
closed contours is that coherent objects tend to be spatially
compact and relatively uniform in surface appearance with
respect to the surrounding background. Closure is thus
viewed as a key cue for figure/ground segmentation.
Abstracting away from cues about interior and exterior
region properties, the typical psychophysical demonstration
of figural closure employs straight or curved lines defining a
region’s bounding contour.

As a Gesalt phenomena, figural closure plays a significant
role in the perceptual organization even of abstract figures
that have no connection to coherent physical objects. This
property of the visual system has come to be exploited across
a culturally diverse set of conventions people have developed
for representing information in graphic media. Referring to
Fig. 1, compact closed or nearly closed paths in graphics, line
drawings, and sketches can indicate, among other things,
individual physical objects, conceptual objects, groupings or
collections, logical or other abstract relations, emphasis,
looping paths or circuits, symbols and characters (or
fragments thereof), and tabular cells.

As a computer vision problem, the detection of compact
closed figures in line art and sketches shares much in
common with the counterpart problem in natural imagery.

The document image domain presents, in many cases, a
simpler image at the input level, where foreground
markings can be separated from the background medium
through relatively straightforward image processing,
thresholding, and contour tracing processes. Following this
stage, however, a sketch or drawing can present over-
whelming clutter, complexity, and noise. See Fig. 2.
Mathematically crisp and straightforward constructs from
topology or geometry are unlikely to prove adequate to
capturing the notion of perceptual salience, especially in the
cases of casual, hand-drawn material. Instead, as is
common with computational formulations for perceptual
organization, the detection of closed figures in sketches and
line art necessarily involves uncertainty, ambiguity, heur-
istics, and judgement calls. As always, we must exploit
constraint. The generative processes underlying drawings
differ from the imaging of physical objects and call for
special consideration of how local image events give rise to
larger scale coherent structure in this domain.

In this work, we adopt a framework common to previous
computer vision algorithms: Starting from seed curve
fragments, construct paths by tracing from one curve to
another with which it is associated by end-to-end proxi-
mity. Typically, T-junctions, crossings, and higher order
confluences of curve endings lead to ambiguity in which
curve to choose for tracing. The key problem is to manage
the explosive search of possible path continuations through
junctions in an effort to find paths satisfying global criteria
for closure and figural salience.

We offer two insights that motivate an effective algo-
rithm. First, we observe that there are two different kinds of
perceptually salient closed paths in drawings, those that
tightly circumscribe regions, and those based on smooth
continuation. This permits the establishment of two distinct
sets of local preferences for tracing. One set of preferences,
which we call maximally turning preferences, seeks the most
tightly closed (or nearly closed) paths. A second set of
preferences, smooth continuation preferences, seeks paths
exhibiting maximal curvilinear smoothness.
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Second, in order to fully exploit these local preferences, it
is worthwhile to perform best-first search to grow contour
paths bidirectionally from each seed contour fragment. This
strategy doubles the opportunities for incipient paths to
grow to closure, and mitigates garden paths that occur
when local preferences misrepresent the trajectories of
globally salient paths. The search process results in a
redundant set of candidate closed paths due to different
seeds finding similar paths. A final consolidation step
merges equivalent candidates.

The present algorithm is fast enough and robust enough to
serve as a key module in a larger system for perceptual
analysis of document images under development at our
laboratory. One application of this work is perceptually-
supported editing of “rough documents,” that is, documents
that involve handwritten sketches, doodles, annotations, or

otherwise do not obey the constraints of formatted text and
graphics [19].

The paper proceeds as follows: Section 2 reviews
previous work. Section 3 further explores the phenomenon
of figural closure and defines the goals for our algorithm.
Sections 4, 5, and 6 describe the algorithm itself, including
image processing and data preparation, definition of local
and global criteria, search, and consolidation. Finally,
Section 7 presents results and Section 8 evaluates key
parameters of the algorithm.

2 PREVIOUS WORK

Early efforts in Computer Vision to detect perceptually
compact region structure by spatial aggregation sought
partiallyclosedregions,or localconvexities.“LocalRotational
Symmetries” [6] are proposed by combining local hypotheses
of centers formed by edge groups. “Partial Circular Regions”
[15] are found by clustering pairs of coarse-scale boundary
contours forming “Primitive Partial Regions.” These are both
multiscale approaches. “U-Structures,” [11] suitable for
detecting buildings in aerial images, comprise sets of parallel
edges joined by a third line on one end.

More recently developed algorithms are based on tracing
paths through a graph of linked edgel or contour elements,
where search is managed through combinations of local and
global constraints and figural goodness criteria. Table 1
compares several approaches. Huttenlocher and Wayner [7]
seek strictly convex groups in line segments derived from
edge data. Severe restrictions constrain the number of path
options at every endpoint, which in turn limits the set of
salient regions which potentially can be found. Jacobs [8]
seeks strictly convex paths through extended edge data,
and incorporates a global criterion on gap size to manage a
backtracking search guaranteed to return every convex set
meeting specified criteria. Elder and Zucker [5] use locally
n-best continuations of edgels based on smoothness and
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Fig. 1. A hand-drawn sketch exhibiting various roles for perceptually
closed contour paths (see text).

Fig. 2. Portion of a typical complex diagram scanned from large whiteboards using an experimental optical whiteboard capture system in routine
operation at our research center [17]. The dimension of this section was drawn at approx. 60 � 40.



corner probabilities, and perform dynamic programming to
find optimal strictly closed paths of any shape. Casadei and
Mitter [3] construct strictly closed paths on curvilinear
contours using recursive composition. Their focus is on
efficiently eliminating redundant candidates. Mahamud et
al. [10] form a local affinity matrix between edgels, and,
then, trace connected components after using a linear
algebra technique to enhance links between edgels falling
on strictly closed contours.

The present algorithm operates on curvilinear contours
and uses two kinds of local preferences, plus flexible global
criteria to manage a bidirectional best-first search with
backtracking. Because previous algorithms for closure
detection are limited to finding either strictly closed or
strictly convex paths, they are not suitable for identifying
perceptually salient structures which may have significant
open ends, and/or may be visually compact, but not strictly
convex. We require effective solutions for curvilinear
contours, which reduce the data volume from primitive

edgels, yet are more expressive than straight-line segments.

Finally, the present algorithm is designed to be tailored to

the constraints of line art data, although it may nonetheless

prove useful for photographic data as well. Canham et al.

[2] perform graph search on hand-drawn line art with

specific attention to tracing smooth continuations versus

turning corners at junctions, but with the goal of finding

specific shapes instead of closed paths in general.

3 PHENOMENON AND GOALS

The phenomenon of perceptual closure is commonly

interpreted to refer to a collection of curvilinear contours

clearly distinguishing an “inside” region from a surround-

ing “outside.” These contours may arise from lightness,

texture, color, motion, or other edge detection processes, or

they may occur as chains of local or extended contrast

ridges. Fig. 3 presents several figures that help to define the
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TABLE 1
Comparison of Figural Closure Detection Algorithms

Fig. 3. Variations on closed figures. See text for discussion.



boundaries of the phenomena and permit us to constrain
the goals of an algorithm.

Fig. 3a is an ideal reference figure. Fig. 3b shows that
contours forming a perceptually closed region need not be
connected, but may have sizable gaps. In Fig. 3b, the
proximity of nearby endpoints permits easy jumping of gaps
and it is easy to imagine how to fill in missing sections of
contour. By contrast, the contours in Fig. 3c overlap one
another and clear end-to-end linking appears less feasible.
Figs. 3d, 3e, and 3f resemble Fig. 3c in that, contour evidence
participating in closed figures can be locally discontinuous or
noisy. We find it acceptable that our algorithm fails on these
examples, including Fig. 3f, which exhibits line quality
commonly found in sketches and line drawings. In our view,
a more sophisticated, intermediate scale process should
operate to discover image contour features defined by
essentially texture qualities. For the present purposes, we
concentrate on continuous or broken paths delineated by a
simple, single-width curvilinear lines, but not fuzzy or
textured contours.

Fig. 3g illustrates that perceptually salient closure regions
need not be convex, but can include a significant degree of
concavity. We equate degree of concavity with perceptual
compactness. Fig. 3h is dominated by concavities. Whether
the squiggle forms a thin closed figure is not immediately
apparent without inspection, while many of its other features
are much more significant. We provide a tunable parameter
for specifying the degree of concavity deemed salient.

Fig. 3i shows that, in order to be perceptually salient, a
closed region need not be truly closed but can have a
significant open end. Fig. 3j pushes the point. An “inside”
region can be defined as the region between the lines but in
most contexts this does not appear to give rise to strong
perceptual salience as a closed figure.

Fig. 3k shows that multiple closed regions can share the
same segment of contour.

Figs. 3l, 3m, and 3n illustrate perceptual closure of
contour paths in the presence of clutter. Clutter that
respects the inside/outside relationship is less disruptive
than clutter that breaks it. Clutter that attempts to disrupt
the closed path by offering alternative paths with better
smoothness (good continuation) does not seem to matter.

From consideration of these prototypical cases, as well as
real-world examples such as Figs. 1 and 2, we identify
desired behavior for an effective algorithm. A good

algorithm must find nearly closed paths in the presence of
gaps and clutter. The paths must allow some degree of
concavity. It must find globally salient paths among
contours whose local evidence for directions of contour
continuity is misleading. It must find multiple paths that
share common contour support. Finally, it must efficiently
identify the subset of closed paths that are perceptually
significant among the exponential number of valid possi-
bilities occurring in highly connected figures such as a grid.

4 DATA PREPARATION

4.1 Junction Graph

Our starting point is a collection of simple curve fragments.
These are relatively straight curvilinear path segments
bounded by free ends, corners, or junctions. These may be
obtained from source data by any number of means,
including local linking of edge or ridge detector outputs,
thresholding, thinning, and tracing of scanned line drawing
data, or tracking a pen or stylus, then detecting corners and
crossings in the resulting digital ink.

Closed paths are to be constructed by tracing sequences
of curve fragments linked roughly end-to-end. The set of
closed paths that could potentially be entertained by the
algorithm is governed by the sets of candidate links
between pairs of curve fragments identified in the data
preparation stage. These links form a graph whose nodes
are the curve fragments themselves. This is the graph that
must be searched for chains representing significant, closed
contour paths. See Fig. 4.

An engineering tradeoff is required in choosing suitable
links to form the junction graph. On the one hand, to form
exhaustive links between both ends of all curve fragments
would be sure to include all possible closed paths. On the
other hand, only fragments proximal to any given curve
fragment end are likely to lie on a common perceptually
significant closed path, while exhaustive linking increases
the search space to unacceptable proportions. Fig. 5
presents dual situations which are both common. In the
left half of this figure, two curve fragment pairs must link
across a spatial gap of size d, while in the right half of this
figure the radius d encompasses a tangle of complex line
work containing seven other curve fragment ends. It is
important that candidate links be formed between all curve
fragment ends within such a tangle because a priori it is not
known which sets of fragments may prove to participate in
a good path.
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Fig. 4. Steps in data preparation. (a) Input figure. (b) Curve ends
clustered by proximity. (c) Junction graph. Nodes are represented by
barbells because every node represents a curve with two ends. Later
steps label every link with corner and alignment scores, then with
junction preference scores.

Fig. 5. (a) To form a link between this pair of curve ends in the junction
graph, the search for nearby ends must extend for a distance of at least
d. (b) The distance d encloses a tangle of curve ends, but not
necessarily all the ones relevant to the local trace through curve
fragments participating in a salient closed figure (lower arrow). An
adaptive clustering algorithm collects all curve ends in the vicinity.



An adaptive link forming process proves advantageous

here. Let us denote by SE the set of curve fragment ends

forming a link with seed endE chosen from a seed pool of all

curve fragment ends. In our implementation, we chooseSE as

the transitive closure of ends occurring near to one another.

An iterative clustering algorithm adjusts the threshold

distance to limit size of this set of local mutual links.
The final step of data preparation is to score candidate links

in the junction graph according to properties of local
geometry. Each pair of linked curve ends is evaluated for the
degree to which their parent curve fragments form a “corner”
relation to one another, or an “alignment” relation, according
to heuristic formulae on relative orientation, etc., [4], [12], [16].
Any pair of curve ends not meeting a threshold value on both
the corner and alignment scores is deemed to represent
nonlinking curve ends and is removed from the junction
graph.

5 CLOSED PATH QUALITY CRITERIA

5.1 Local Junction Preferences

The strategy for searching the junction graph for chains
representing closed paths is based on choosing nodes
(curve fragments) one at a time, then trying to grow a

closed path by extending the chain in both directions
simultaneously. This search is managed through the use of
local criteria for prioritizing the order in which the chains
are grown by extending or backtracking. These local criteria
reflect domain knowledge about the ways in which curve
fragments tend to compose into larger closed paths in the
line art/hand-drawn sketch domain we are focused on.
Growing chains are evaluated by global figural goodness
criteria to decide when search should be terminated or
redirected according to success and failure conditions.

Fig. 6 illustrates the fundamental observation that offers
leverage in this domain. One kind of perceptually salient
closed path is found as a maximally turning path, or one
that defines the smallest region enclosed by any contour of
the path. In this case, distinct bounded regions are the
primary objects of interest. In document images, objects
found within a maximally turning region tend to bind
together visually, for example, checks found within the cells
of a table as shown in Fig. 1.

A second kind of perceptually salient closure is found as
a maximally smooth path, where choices of directions
through junctions obey the law of good continuation. In line
art, these paths normally reflect a single motion of the pen
and contour junctions merely reflect “accidental” crossings
of distinct pen-stroke objects.
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Fig. 6. Two kinds of perceptually salient figural closure. (a) A maximally-turning closure path traces the smallest figure possible, while a smooth
continuation closure path prefers smooth continuation traces through junctions. Other closed paths through the seed (thick contour fragment) are
perceptually insignificant. (b) Simpler figure illustrating use of junction preference scores. (c) Numbers indicate junction preference scores, under
both kinds of path preference, for a path traced between pairs of curve fragments indicated by arcs. Any score below 1.0 indicates a penalty. Arrows
indicate minimal penalty paths.



An algorithm seeking Gestalt structure in line drawings
must detect both kinds of closure. Note that causal under-
pinnings for the law of good continuation are found in the
physical world as well, for example, due to object occlusion.
Therefore, the bifurcation of closure types and the usefulness
of detecting both types of closure may well apply to natural
scenes in a similar way. We leave this exploration for future
work.

To enable a search for both kinds of contour closure, we
analyze local contour junctions and score each contour pair
entering andexitingthe junction for its supportof amaximally
turning path versus a maximally smooth path. We call these
junction preference scores. Thesescoresmakeuseof thepairwise
contour corner and alignment scores mentioned in Section 4,
but they must take into account the local context of all of the

contour ends linked to either member of a given pair, not just
the geometry of that pair itself. Junction preference scores
range from 0 (minimal preference) to 1 (maximal preference).
As discussed in Section 6.3, this definition of score permits
preferences toaccumulatealong acandidate tracebyaprocess
of attenuation simply by multiplying local preference scores
along the way.

Fig. 6 illustrates how this works. Contour ends A-B form
a good continuation while ends A-C form a good corner,
but a poor smooth continuation. When only the pair A-C is
present (left column) or only A-B is present (right column),
both maximally turning paths and maximally smooth paths
are forced to proceed through these respective contour end
pairs. There is no penalty for a maximally closed path going
straight, nor for a maximally continuous path making a turn
in its preferred direction when there is no other alternative.
In the middle column, however, where both junctions are
present, pair A-B is scored to reflect a preference for a
maximally smooth path while A-C is scored to reflect a
maximally turning path.

This kind of analysis permits us to build a table (Table 2) of
local junction preference scores that rate end pairs according
to their corner and alignment scores in the context of other
end pairs occurring at that junction. The table contains four
columns. Two columns apply to maximally turning paths,
and two to smooth continuation paths. Each set contains
scores for paths proceeding to construct a closed path turning
in both the clockwise and counterclockwise directions. The
scores contained in this table were arrived at on a purely
intuitive basis by following the logic exemplified in Fig. 6.
Note, for example, that, when several path directions are
possible, maximally closed paths prefer to turn in their
preferred direction, and are increasingly penalized for
choosing directions deviating from that. Maximally smooth
paths prefer to keep going straight, they are somewhat
willing to turn in their preferred direction and they resist
turning in their counter-preferred direction. The exact values
in this table are not critical, but varying the ordering of values
results in less efficient search or sometimes failure to detect
the best closed figure(s) containing a given seed contour. For
clarity, the table depicts only corners, crossings, and T-
junctions. Y-junctions and junctions involving more than four
curve ends are accounted for in the same table, as all pairwise
end configurations are labeled as “alignment” or “corner.”

Fig. 8 shows how this table comes into play in handling
intermediate and ambiguous cases that occur very often in
our target domain. In order to trace a maximally turning path,
tracing must sometimes choose a good continuation path
through a local junction, or even a turning direction opposite
that defining the region as a whole. Conversely, in order to
trace a maximally smooth path, tracing must sometimes
neglect a local good continuation through a junction and take
a sharp turn instead. These situations are contended with in
the search procedure described in Section 6.

5.2 Global Figural Goodness

While local junction preferences present local criteria for
figural goodness that can help guide search, the goal is to find
globally salient closed regions. For this reason, we need to
define a global figural goodness criterion that indicates when
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TABLE 2
Table of Junction Preference Scores

Columns of scores are presented for path searches attempting to find a
closed figure proceeding in the counterclockwise (turning leftward) or
clockwise (turning rightward) direction, proceeding through the junction
from the left (shaft of the arrow). Columns are presented for both
maximally turning and smooth continuation paths. For each row, the
arrow indicates a possible path trace through a configuration of corner
and alignment links. A score of 1.0 represents maximal preference.



a good closed contour has been found from a given starting
seed.

The global figural goodness measure we employ was

constructed heuristically through evaluation of hundreds of

examples encountered in our image domain. We identify

three criteria, all of which are fully satisfied by an ideal

closed contour path. These are expressed as three compo-

nent terms cast as values ranging from a maximally good

value of 1 to a minimal value of 0. Their conjunction is

expressed by combining them multiplicatively. Fig. 7

illustrates the component criteria we found significant:

. Compactness term. Perceptually salient closed fig-
ures tend to be compact. They may contain
concavities, but concavities should not dominate

their form. We estimate this property by the ratio of
area of the figure to the area of its convex hull. This
term can be relaxed somewhat to permit increasingly
large concavities in the figures found.

. Endpoint-distance term. This term gauges the
degree to which a path completely closes on itself
versus leaving a gaping open end. We estimate this
property as 1ÿ de=p, where de is the distance
between the endpoints of the path and p is its length.

. Non-end-nearest-approach term. This term penalizes
paths one of whose endpoints terminates near the
body of the path instead of near the other end. See
Fig. 7c. Measure the nearest approach of each endpoint
to the portion of the curve distal from that endpoint.
Call the minimum of these two measurementsa. Then,
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Fig. 7. Factors entering into a measure for global goodness of a candidate closed path. (a) Compactness measured as ratio of enclosed area to area
of convex hull. (b) Endpoint distance. (c) Degree to which one end of the path extends beyond the other.

Fig. 8. (a), (b), and (c): Closed paths posing successively greater difficulty for bidirectional search from a seed curve fragment. (d), (e), and (f):
Counterpart abstract search graphs (these are abstract illustrations of qualitative behavior and do not map literally onto the example figures above).
Locally, best search paths are depicted as the branches bending most toward the other side. In (a) and (d), the target closed figure can be found by
extending a branch from just one end of the seed (e.g., the north end). In (b), and (e), the target closed figure can be found by pairwise testing of
nodes on the best branch search paths (dotted line). To find the closed path in figures such as (c) and (f) requires expanding locally nonpreferred
nodes. The situations depicted here refer to smooth continuation paths. A similar set of figures could be drawn illustrating search for maximally
turning closed paths.



the non-end-nearest-approach term is taken as
min½1; a=ðde ÿ p=cÞ�, where de is the distance between
the endpoints, p is the curve length, and c is a constant
which depends on image resolution.

Under different choices of parameters in the junction

preference table, it could become beneficial also to test

winding number or for self-crossings, neither of which is

representative of the kind of perceptually salient closed

paths we are seeking.
Note that the global goodness measure assesses figural

“salience” only for a curve in isolation. The true visual

salience of a curve depends of course on what else is around

(as well as visual task). An ideally scoring rectangle is in

fact nearly invisible as an independent object when

embedded in a grid. Thus, the goal of our algorithm is

not to return as many paths as possible having a high global

goodness measure. Rather, the search algorithm itself plays

a crucial role in delivering visually salient figures by

searching for high global goodness paths under the

direction of local preferences. This strategy serves to

exclude spurious high global-goodness paths embedded

within dense linework.

6 BIDIRECTIONAL SEARCH PROCEDURE

6.1 Design Principles for the Search Procedure

Search for closed paths is based on growing each candidate

path in both directions starting from a seed contour

fragment. The strategy for our search procedure is informed

by the following design principles:

1. Pick up the easy structure first and fast.
2. Do not repeat work already done.
3. When the going gets tough, pursue the most

promising leads first.
4. Construct a wealth of hypotheses, then combine or

prune later.

These principles reflect the goal of our algorithm, which
is to achieve fast and robust detection of closed contour
paths primarily in sketches and line drawings, using
currently available computing hardware and programming
languages. The opposing goals of speed and thoroughness
of search mandate engineering tradeoffs. Alternative design
decisions may be appropriate for algorithms attempting
different objectives.

Once launched from a seed fragment, the search
procedure may return zero, one, or several closed path
candidates. Search from different seeds may return iden-
tical or very similar paths. This accords with design
principle 4, but violates design principle 2. Section 6.5
describes how redundant paths are consolidated.

To minimize the number of redundant paths found, we
employ a strategy to eliminate seeds by judiciously
choosing and marking contour fragments. Most salient
closed paths can be found by searching from a small subset
of the potential seed fragments forming nodes in the
junction graph. This is discussed in Section 6.4.

The core bidirectional search procedure itself adheres to
design principles 1 and 3. By proceeding best-first, it
rapidly finds the most perfectly formed closed paths in time
linear in the number of contour fragments contained in a
path. Then, successively less preferred avenues are tried to
discover closed paths that occur among increasingly
misleading garden paths.

6.2 Search Tree Representation

Figs. 8a, 8b, and 8c illustrate a series of closed paths whose
detection requires an escalating amount of effort. Each run
of the search procedure is executed with one of four
parameter settings governing closure type and turn direc-
tion. Search will seek either maximally turning paths or
smooth continuation paths and it will attempt to find paths
closing on either one side or the other of a given seed
fragment. Let us label one end of the seed fragment,
“North.” Then, paths on the west side of this fragment will
be sought by searching for paths proceeding counter-
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Fig. 9. Images giving rise to the potential for explosion in search. (a) Even with safeguards described in Algorithm A, search for closed paths seeded
from the center curve fragment involves creation of 208 TreeNode structures and potential testing of 757 paths (most of which are filtered by virtue of
their ends pointing in opposite directions). (b) The number of smooth continuation paths is 2N , where N is the length of the chain. A search over these
is limited to a linear number by step A.2.2. (c) Curve fragments arising as artifacts of preprocessing the borders of a scanned whiteboard image. In
practice, we find that pathological search conditions arise from “image noise” of this sort more often than actual drawn material.



clockwise heading north from the seed, and clockwise
heading south from the seed. These parameter settings of
the search direct which column of Table 2 to use in
extending the growing contour according to local junction
preferences. For the sake of the following discussion, let us
refer to Fig. 8, assuming that search is seeking smooth
continuation paths lying to the west of the seed contour.

The quality of the search spaces for paths of three degrees
of difficulty are depicted abstractly in Figs. 8d, 8e, and 8f. The
search tree has two roots, one extending from the north of the
seed curve fragment, and one extending from the south end.
In general, the search consists of expanding the tree on one or
both sides to generate new nodes. A node in the search tree
corresponds to a curve fragment, and the branches emanat-
ing from a node correspond to the choices among path

continuations on the distal junction of that curve fragment.
Any north-subtree/south-subtree pair of nodes thus repre-
sents a path of curve fragments linked-end-to-end through
the junction link graph. To any such pair of nodes we can
apply the closed path goodness measure.

The abstract search trees are drawn in Figs. 8d, 8e, and 8f,
such that branches are ordered by local junction preference,
the most preferred junction trace being the one bending the
most toward the other half of the tree. For example, for a
smooth continuation closed path search, the branches
emanating from each node on the north half of the tree
would be arranged left to right in order of local junction
preference score as looked up in column “smooth con-
tinuation CCW” of Table 2.

6.3 Search Procedure

The closed path of Fig. 8a is well-behaved with respect to
the smooth continuation path criteria. It is fully closed in the
sense that all participating curve fragments are linked end-
to-end all the way around the path. Furthermore, the
smooth continuation local junction preference of each of the
curve fragment ends leads to a next fragment that is in fact
on the correct closed path. (This figure is not well-behaved
with respect to maximally closing paths because local turns
lead to dead ends.)

Correspondingly, the search path for this closed figure is
quite simple as shown in Fig. 8d. In fact, the closed path can be
found by expanding nodes from just one end of the
bidirectional tree until the path closeson itself. (For simplicity,
not all of these branch choices are illustrated in Fig. 8d).

In cleanly drawn line drawings, a significant fraction of
high-goodness closed paths are of this type. The search
procedure is designed to find these rapidly by growing one
branch first along the best-first path.

The closed path of Fig. 8b is somewhat more difficult to
detect than Fig. 8a. Its counterpart search tree quality is
illustrated in Fig. 8e. The dotted line links the pair of tree
nodes representing the best quality closed path available
between the north and south subtrees. This closed path
cannot be found by best-first extension from either the north
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Fig. 10. Consolidation of redundant paths using pose clustering.
(a) Input curve fragments. (b) Poses (oriented bounding boxes) of
the 17 paths found by the search process (five maximally-turning
and 12 smooth continuation). (c) The nine closed paths returned
after consolidating these (see text).

Fig. 11. The 62 closed paths returned by the closed path finding
algorithm on 467 curve fragments extracted from Fig. 1. Paths are
depicted by their oriented bounding boxes. Processing time: Three
seconds.



or south end of the seed alone because it is not fully linked;
both north and south subtrees must be expanded to
generate the required nodes representing the best goodness
closed path. Nodes from the North and South branches
have to be tested pairwise.

Closed paths of a nature illustrated in Fig. 8c require
even more exhaustive search to detect. Not only do these
paths require expansion in both north and south directions
from the seed curve fragment root, but they require
exploration of branches in these trees that reflect locally

nonpreferred choices in trace direction. Observe the garden
paths where local smooth continuation criteria lead away
from the closed figure. In Fig. 8f, the dotted line shows that
the target closed path is represented by node pairs found
somewhere in the bowels of the search subtrees. We must
take care to mitigate the potentially exponential explosion
of search paths.

To do this, the search strategy is based on straightforward,
best-first search with pruning. As with A* and other search
techniques, we require an estimate of the quality of
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Fig. 12. (a) Input data: 702 curve fragments. (b) Results: 125 closed paths. Processing time: Eight seconds.



incomplete paths. In our case, this obtains from local junction
preference scores as described in Section 5.1. We assume that
globally better quality closed paths will, in general, be those
reflecting preferable choices in local tracing through curve
fragment junctions, according to the closed path type sought
(maximally-turning or smooth-continuation). Because junc-
tion preference scores in Table 2 are scaled from 0
(unpreferred) to 1 (most preferred), we can combine these
by multiplication. Proceeding outward from the root, each
north or south partial path represented by an expanded node
in the subtree suffers attenuation in estimated quality for
every nonpreferred direction choice along the way. This
quality estimate is used both to select which node to expand
next, and to prune unpromising nodes.

Data Structure: TREENODE: Indicates a node in the
search tree. A TreeNode Contains the following fields:

. Parent-TreeNode: pointer to the parent TreeNode
(toward the root).

. Outward-curve-fragment-end: the curve-fragment
end in the junction graph corresponding to this
node in the search tree, distal to the seed curve
fragment.

. Cumulative-junction-preference-score: The product
of local junction preference scores tracing back to the
root node (seed curve fragment).

. Child-curve-fragment-list: A list of curve fragment
ends linked to this TreeNode’s outward-curve-frag-
ment-end, along with each’s local junction preference
score. This list is maintained in descending order of
junction preference score, so that if the current
TreeNode is expanded further, the most preferred
continuation of the path will be expanded first.
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Fig. 13. (a) Detail from Fig. 12, showing smooth-continuation paths (b) and maximally-turning paths (c).



. Best-child-score: The cumulative junction preference
score of the first child in child-curve-fragment-list.
This is simply the product of this TreeNode’s
cumulative-junction-preference score and the local
junction preference score of the best extension from
this TreeNode.

. Depth: The depth of this TreeNode in the search tree.

The search algorithm maintains two lists of TreeNodes
that have been expanded so far, one set branching form the
north end of the seed fragment, the other set branching
from the south end. These lists of TreeNodes are main-
tained in descending order of best-child-score.

Algorithm A: Search
A.1. Initialize the north and south TreeNode lists with a

TreeNode representing the north end and south end of
the seed curve fragment, respectively.

A.2. Loop while the best-child-score of the first member of
the north TreeNode list (or south TreeNode list) is
greater than a threshold value, Tcumatt. We use
Tcumatt ¼ :6 for smooth continuation search and
Tcumatt ¼ :9 for maximally turning search.
(See discussion in Section 8.)

A.2.1. Expand the best scoring TreeNode from the north
(south) TreeNode list. This returns a new
TreeNode representing the extension of the
search path down the most preferred path step
beyond the curve path represented by the
expanded TreeNode.

A.2.2. Compare the newly created TreeNode with every
other TreeNode on the north (south) TreeNode
list. If this new TreeNode’s outward-curve-
fragment-end matches that of any other TreeNode
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Fig. 14. (a) Input data: 534 curve fragments. (b) Results: 169 closed paths. Processing time: Six seconds.



on this side, then abandon the expansion of this
TreeNode and proceed to Step A.2.1.

A.2.3. Apply the global curve path goodness test
between this TreeNode and each TreeNode on the
south (north) TreeNode list. Before applying the
global goodness test to a path, we use a pretest on
the relative orientation of the two TreeNodes’
outward-curve-fragment-ends. We discard
immediately paths whose ends are directed away
from one another.

A.2.4. If the goodness measure achieves a threshold
value Taccept, then accept this path as a candidate
closed path.

A.2.5. If the path achieves a more strict threshold value
Tdone, then terminate the search and return the
candidate closed paths found so far.

A.2.6. Add the newly created TreeNode to the north
(south) TreeNode list, in its proper location to
keep this list sorted in decreasing order of
best-child-score.

A.2.7. If the newly created TreeNode exceeds a
predetermined limit on search tree depth,
proceed to step A.2.1.

A.2.8. If the north (south) TreeNode list length exceeds a
maximum size, then remove its last element (the
TreeNode with the smallest best-child-score).

A.3. Return the list of candidate paths accumulated.

Note the use of two thresholds on the acceptance of
candidate closed paths. A lower threshold Taccept is used in

accumulating closed paths of good enough quality that they

should be reserved for further consideration, but the search

for better paths continues. Paths meeting a higher quality

threshold Tdone are deemed good enough to declare success

and terminate the search for any more paths from this seed

(under these turning/continuation/west/east search para-

meters). The settings of these parameters are to be

determined according to any particular application’s data

and speed/quality tradeoff. By and large, for images
containing clean, well-formed closed paths, performance

can be maximized by setting Tdone lower, while highly

connected images containing many spurious paths require

more exhaustive search controlled by raising this value.

Similarly, search depth limit and maximum north or south

TreeNode list size are application dependent. For the first of

these parameters, our implementation uses the value

20 chain steps which permits detection of closed paths in

significantly cluttered and broken curvilinear data. We limit
TreeNode list size to 20 TreeNodes. This is mainly to limit

the time searching pathological configurations as shown in

Fig. 9a. Step A.2.2 is also needed only for pathological

configurations, as shown in Fig. 9b. While these situations

can occur occasionally as deliberate drawing content, more

often the pathological cases that catch the algorithm

without these safeguards arise in certain kinds of of image

noise such as Fig. 9c.

6.4 Seed Selection and Elimination

The most thorough algorithm for finding high global
goodness-measure closed paths would perform the fore-
going search algorithm repeatedly using every contour
fragment as a seed, for all four search conditions (maxi-
mally-turning/smooth-continuation, west closures and east
closures). This would result in repeated detection of the
same contour, seeded at every curve fragment along its
length. In practice this is very inefficient and not necessary.

To avoid this extra work, we mark each contour fragment
every time it is found to participate in an above threshold
closed path (Taccept). The mark applies to only one of the four
search conditions, depending on the path tracing direction.

To amplify the benefit of this strategy for eliminating
likely redundant seeds, it pays to be judicious in choosing
seeds early that will be likely to yield closed paths and
therefore eliminate many other curve fragments from
further consideration. To this end, we separate seeds
forming an isolated corner with another curve fragment
from those in the interior of X or T-junctions. Search for
smooth continuation paths is run on the corner-forming
seeds first. Search for both smooth continuation and
maximally turning paths is run next on interior seeds.

6.5 Candidate Consolidation

The search procedure in general, returns a set of candidate
closed paths that may contain multiple representations of the
same or nearly the same path. These need to be consolidated
down to a nonredundant set of high-goodness closed figures.

This isdonebyclusteringclosedpathcandidatesaccording
to similarity of pose. Pose is the five-parameter vector
specifying the oriented bounding box enclosing the path.
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Fig. 15. (a) Input image. (b) Curve data: 265 curve fragments.

(b) Results: 73 closed paths.



See Fig. 10. Within each cluster, consolidation proceeds in two
steps. First, any path is eliminated that is subsumed by any
other path. Path A is subsumed by Path B if Path A’s global
goodness is no greater than Path B’s and its support is a subset
of Path B’s. Second, any path is eliminated whose pose is
sufficiently similar to another path whose goodness score is
greater. Search for candidate paths of similar pose is very fast,
mediated by a spatially-and scale-indexed datastructure [14].
See [18] for a suitable pose similarity measure.

7 PERFORMANCE

Figs. 11, 12, 13, 14, 15, and 16 present results of the closed path
finding algorithm on various types of data. Runtimes are
stated for the closed path finding algorithm itself, and do not

include image preprocessing and data preparation stages.

Timing is for a Java implementation running on a 700 MHz

Pentium. Statistics for Fig. 12 are typical for a complex image:

input curve fragments 734
time 8 seconds

smooth continuation paths found initially 293
maximally turning paths found initially 81

paths after consolidation 139
TreeNodes created 11; 592

paths potentially tested 10; 286
times search algorithm called 1; 032

These figures exercise a number of the objectives

discussed in Section 3. The algorithm detects partially
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Fig. 16. (a) Input data: 409 curve fragments (scanned from [1]). (b) Results: 126 closed paths. Processing time: Seven seconds.

Fig. 17. (a) Closed paths found for grid region of Fig. 11a, depicted as approximations to the curve fragments themselves instead of oriented
bounding boxes. (b) A data preparation step to find virtual T-junctions would break curve fragments into pieces permitting the closed paths
representing the right-side table cells to be closed on four sides.



closed contours containing gaps and/or a single large

opening. It finds partially concave, as well as strictly convex

paths. It identifies multiple closed paths that share contours

in common. It tolerates misleading local evidence about

path continuation. It delivers the perceptually salient closed

paths occurring in a grid among the presence of many

irrelevant paths satisfying the goodness measure. Fig. 13

offers a detail from Fig. 12, showing how smooth-continua-

tion paths are distinguished from maximally-turning paths.
Fig. 11 exhibits a subtle effect which may be

considered a system failure. Fig. 17a presents a closeup

view of the paths found in the vicinity of the grid. Here,

closed paths are rendered not by their oriented bounding

boxes, but by approximations to the curve fragments that

comprise them. Note that the two rightmost paths do not

include curve fragments corresponding to the right side

of their rectangular shapes. This is because the rightmost

vertical stroke in the grid is broken into only two curve

fragments, none of which correspond to suitable pieces to

complete these cells. A more elaborate data preparation

stage which contains mechanisms to introduce curve

breaks at “virtual” T-junctions, as suggested in Fig. 17b,

would alleviate this issue.

A second failure mode (not shown) occurs with wiggly or

zig-zag contours forming closed regions. Such contours are

normally broken into large numbers of small fragments

joined end-to-end. When these joins are interpreted as corner

junctions, a closed path search would be required to make a

large number of turns opposite the preferred direction for a

given clockwise/counterclockwise turn direction. These are

penalized according to values in the junction preference table

and the search can be extinguished before a good closed path

is found. In our view, wiggly paths fall under the same

category as “sketchy” curves (Fig. 3f) and should be dealt

with by multiscale contour texture processes turning these

into single contour “chunks.”

8 DISCUSSION

The closed paths delivered by this algorithm are a subset of

the plethora of available paths that simply satisfy the global

goodness measure. By design, the operation of search itself

seeks the more salient paths first according to local junction

preferences, and these normally lead to termination of

search before spurious paths are entertained.

The effects of varying Tcumatt, as well as the significance

of the smooth-continuation and maximally-turning con-

straints, are shown in Fig. 18 and Table 3. This test figure

contains ten nominal contour figures (two oval figures are

tangent) intersected by two rectangles, yielding nominally

twelve salient closed paths satisfying a smooth-continuation

constraint. Additionally, the figure contains approximately

25 compact maximally-turning paths. The present algo-

rithm finds these closed paths quickly, as shown in the first

column of the table. In addition to the salient contours, the

algorithm returns two “nonsalient” contours. These are

paths that satisfy the global figural goodness criteria, but

are not perceptually salient because, as shown in Fig. 18b,

they are incomplete or enclose “ground” (nonsalient type i)

or because they take inconsistent paths through junctions

(nonsalient type ii). Both nonsalient contours returned by

the algorithm on Fig. 18a are of type i. “Other” closed paths

are classified as those that may be neither strictly smooth-

continuation nor maximally-turning, yet are perceptually

accessible, such as adjacent pairs of squares in the grid

figure element. By these criteria, approximately 75 percent

of the closed paths found in each of Figs. 14, 15, and 16

would be considered salient, 25 percent nonsalient.

Column 2 shows that the algorithmic distinction between

smooth-continuation and maximally-turning contours is

indeed critical, both in search performance and in results.

Here, we tested a simplified version of the algorithm in which

all junction preference scores were set uniformly to to 1. The

effects of this are to remove systematic selection of child

nodes to expand during search and to eliminate pruning of

unpromising nodes in the tree based on path characteristics.

Also, it is not meaningful in this situation to do sophisticated

seed selection as described in Section 6.4. Not only is this
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Fig. 18. (a) Test figure. (b) Examples of types of closed paths that can

be traced through this figure.



impoverished algorithm much slower, but it returns many

nonsalient paths (many nonsensical, of type ii) while it fails to

find several significant smooth-continuation paths.

Columns 3 and 4 show the effects of varying the

thresholds on cumulative junction preference score, Tcumatt
(Section 6.3). These parameter govern how many “wrong

turns” a path may take. Reducing Tcumatt results in

discovery of more paths, while increasing it reduces the

number of paths delivered that violate local junction

preferences for smooth-continuation or maximal-turning.

When Tcumatt is cut by half (column 3), the algorithm

performs significantly more search. It finds all of the target

smooth-continuation and maximally-turning paths, while it

also returns a large number of nonsalient paths. These

nonsalient paths are of type i however, and, as such, they

tend to make sense in terms of consistency of tracing

through junctions. When Tcumatt is increased by half toward

its maximum value (column 4), search is terminated more

quickly, but at the cost of failing to discover all of the salient

closed figures (in this case it fails to find the jagged object in

the center of the figure).

In the context of our larger research program, to bring

the philosophy and techniques of Perceptual Organization

to bear on applications surrounding informal documents

[20], the performance of this algorithm is quite satisfactory.

For example, closed paths represent a very convenient

intermediate stage for shape classification leading to

beautification of sketches in terms of rectangles, triangles,

ellipses, and other formal graphic objects.

To the extent that edge detection or other preprocessing

steps deliver significant intensity, color, or texture bound-

aries in photographic scenes in terms of extended curvi-

linear boundary fragments, the present approach can prove

effective beyond the domain of line art as suggested by

Figs. 14 and 15.

However, the detection of closed regions based on curve

tracing suffers an inherent drawback. In order to be

discovered by search, closed paths must be represented in

the junction graph by links between contour ends. These

may not be easy to construct, especially when perceptually

compact regions arise from blurry, broken up, or weakly

defined boundaries. A complementary approach might

detect locally concave regions, then group pairs or larger

sets of these whose concavities all face one another or share

space in common. A role for automatic tracing processes

has been proposed for human intermediate level vision [21].

It may be entirely appropriate for Perceptual Organization

stages of computer vision systems to employ multiple

strategies for detecting perceptual closure, including the

one presented here.
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