SCI 52 — Artificial Intelligence:

Deep Learning, Human Centered AI and Beyond

Cognitive Architecture

Knowledge, Patterns, and Reasoning

Eric Saund, Ph.D. October, 2019

www.saund.org

Brains and Minds

Cognitive Architecture: Outline

- Architecture in Information Systems
- History

Computational theory of mind

- The Standard Model Cognitive Architecture
 - Example: Soar
- Important Concepts
 - Marr's Three Levels
 - Reactive vs Deliberative
- Architecture in NN / Deep Learning Networks
- Flight of Imagination
 - LIDA, CopyCat
- Architecture of a Conversational Agent

Information Architecture: A Book

Information Architecture: A Web Site

HTML1.0

HTML5/CSS/Javascript

- active nav widgets
- guided tours
- search
- state
 - cookies
 - navigation history
- contingent access (passwords)
- personalization

Information Architecture: A Computer

	App	olications	
	System Libraries System Call Interface		
	VFS	Sockets	Scheduler
	File Systems	TCP/UDP	
	Volume Managers	IP	Virtual Memory
Ī	Block Device Interface	Ethernet	
	Device Drivers		
	Resource Controls		
l	Firmware		
	Metal		

Cognitive Architecture: Basic Agent

Cognitive Architecture: Basic Agent

Cognitive Architecture: Historical Roots

1800s | 1900s

Psychoanalytic Theories

Freud, Jung

Perceptual & Phenomenal Psychology Helmholtz, William James **Artificial Intelligence**

Cybernetics McCarthy, Minsky

Norbert Wiener

Theory of Computation
Turing, von Neumann

Computational Theory of Mind

McCulloch and Pitts

Chomsky

Newell & Simon

Behaviorism

Pavlov, B.F. Skinner

Guiding Metaphor

- engines and hydraulics
- signal transmission

- signal processing
- calculating machines

computers

Cognitive Architecture: Standard Model

Cognitive Architecture: Big Questions

- What are the types of content held in the workspace?
 - percepts
 - beliefs
 - memories
 - goals
 - intentions & plans
 - emotions
 - attitudes
- What are the representations for state and knowledge?
 - activation patterns over fixed vectors
 - · graphs of objects and relations
 - frequencies and phases of waveforms
- How is processing controlled?
 - automatic processes
 - conscious deliberation
 - selection among choices

Soar Cognitive Architecture

Soar

(Newell, Laird, 1983 -> present)

- Definition of intelligence:
 - problem states and transitions
 - solutions found through search in state space
- Representation:
 - graphs of objects and relations
- Control: production system
 - Working Memory blackboard
 - procedural knowledge
 declarative knowledge

 Long-Term Memory

Soar: Water Jug Problem Example

Definition of intelligence:

• problem states and transitions

• solutions found through search in state space

3 gal.

Start state: both jugs empty.

Goal state:
3-gallon jug
contains

1 gallon of water.

Fill

Representation in Soar

Workspace State Graph

- data objects
- attributes & relations
- operators
- Working Memory (state)
- Long-Term Memory (knowledge)

Representation in Soar

Workspace State Graph

- data objects
- attributes & relations
- operators
- Working Memory (state)
- Long-Term Memory (knowledge)

Production System

- Working Memory blackboard
- declarative knowledge what
- procedural knowledge how
 - rules
 - operators
- subgoal states

Processing Cycle

Executive Function (Psychology, Cognitive Neuroscience):

- update Working Memory from sensory and Long-Term Memory resources
- focus attention, inhibit distractors
- shift task context

Cognitive Architecture: Outline

Architecture in Information Systems

History

Computational theory of mind

- The Standard Model Cognitive Architecture
 - Example: Soar
- Important Concepts
 - Marr's Three Levels
 - Reactive vs Deliberative
- Architecture in NN / Deep Learning Networks
- Flight of Imagination
 - LIDA, CopyCat
- Architecture of a Conversational Agent

Production Rules vs. Neurons

Marr's Three Levels of Abstraction

David Marr: Theoretical Neuroscience Computational Intelligence what?

Computational Theory

What is the computation and by what principles is it accomplished?

Algorithm

What representations and algorithms are used to carry forth computation?

Implementation

On what physical hardware and firmware is the algorithm run?

Example

Textbook: ToC, body text, index

Scrolling text roll, manual + automatic positioning

Projection of markings printed on acetate film, keyboard controls scrolling per ToC and index.

Cognitive Architecture: Reactive Agent

Cognitive Architecture: Deliberative Agent

Cognitive Architecture: Reflective Agent

Reactive vs. Deliberative

Reactive

automatic & strictly determined

modest internal state

implicit representations

Kahneman System 1

Example: thermostat

Deliberative

makes choices

rich internal state

explicit world models

Kahneman System 2

Example: building temperature management system

Reactive vs. Deliberative Building Temperature Controller

Example: thermostat

Example: building temperature management system

Reactive vs. Deliberative

Reactive

automatic & strictly determined modest internal state implicit representations

Deliberative

makes choices
rich internal state
explicit world models

A Reactive Water Jug Solution in Soar

Deliberative search space

jug-5, jug-3

Reactive program rules

0, 3 Then

Pour (3,5)

3, 0

Ιf

3, 0

Then

Fill (3)

3, 3

Ιf

3, 3

Then Pour(3,5)

Neural Network Architectures

Alexnet

Architectural Elements

Layer dimensions, weights, nonlinearities

Organization

Layer connectivity

Purpose

Function approximation

Neural Network Architectures

Reactive or deliberative?

The Ingredients of Intelligence

<u>Knowledge</u>

- data mining
- knowledge graphs

Modern Machine Learning

predictive analytics

Pattern Matching

- computer vision
- speech recognition
- Natural Language Understanding

Reasoning

- optimization
- planning

Cognitive Architecture: Outline

Architecture in Information Systems

History

Computational theory of mind

- The Standard Model Cognitive Architecture
 - Example: Soar

- Important Concepts
 - Marr's Three Levels
 - Reactive vs Deliberative

- Architecture in NN / Deep Learning Networks
- Flight of Imagination
 - LIDA, CopyCat
- Architecture of a Conversational Agent

Cognitive Architecture: Fundamental Parameters

Cognitive Architecture

- Naturally Intelligent Agent
- Artificially Intelligent Agent

Where does knowledge reside?

How is state represented and utilized in decisions?

Forms of Memory

Localist vs. Distributed Representations

What is the control mechanism: what to do & think next?

Distinction between Program Control and Data

How Learning Happens

LIDA Cognitive Architecture

LIDA Cognitive Cycle

Task: Letter string analogy

$$abc \Rightarrow abd$$
 $mrrjjj \Rightarrow ?$

Task: Letter string analogy

$$abc \Rightarrow abd$$

 $xyz \Rightarrow ?$

Figure 7: A feedback loop between perceptual and conceptual activity.

Copycat/Metacat Slipnet

Running Metacat

Cognitive Architecture: Outline

Architecture in Information Systems

History

Computational theory of mind

- The Standard Model Cognitive Architecture
 - Example: Soar

- Important Concepts
 - Marr's Three Levels
 - Reactive vs Deliberative

Architecture in NN / Deep Learning Networks

- Flight of Imagination
 - LIDA, CopyCat
- Architecture of a Conversational Agent

Conversational Agent

Question answering task

"Alexa, who won the 1934 world series?

"The Saint Louis Cardinals beat the Detroit Tigers 4-3 in the 1934 World Series."

Architecture of a Conversational Agent

Architecture of a Conversational Agent

Cognitive Architecture: Standard Model

Why Are Conversational Agents So Dumb?

Question answering task

"Alexa, who won the 1934 world series?

"The Saint Louis Cardinals beat the Detroit Tigers 4-3 in the 1934 World Series."

"Alexa, who was the president then?"

"This might answer your question. The president of the United States is Donald Trump."

Cognitive Architecture for a Conversational Agent

The Ingredients of Intelligence

<u>Knowledge</u>

Pattern Matching

Natural Language Understanding

Reasoning

Summary: Taxonomy

Cognitive Architecture

NN Architecture

Eric Saund

- Research scientist in Cognitive Science and Al.
- Conversational Agents, Visual Perception, Cognitive Architectures.
- I build stuff.

Projects
Papers

Curiosities

Links
Contact

http://www.saund.org
saund@alum.mit.edu

Conversation