ValleyML.ai State of AI and ML - Summer 2019

Cognitive Architecture in Models for Natural and Artificial Intelligence

Eric Saund, Ph.D. August, 2019

www.saund.org

Outline

- The Standard Model for Cognitive Architecture
- Example: Soar
- Important Concepts:
 - Marr's Three Levels
 - Reactive vs Deliberative
- Architecture in NN / Deep Learning Networks
- Al Application: Conversational Agents

Cognitive Architecture: Big Questions

- What are the types of content held in the workspace?
 - percepts
 - beliefs
 - memories
 - goals
 - intentions
 - action plans
 - emotions
- What are the representations for state and knowledge?
 - activation patterns over fixed vectors
 - graphs of objects and relations
- How is processing controlled?
 - automatic processes
 - conscious deliberation
 - selection of operators

Soar

(Newell, Laird, 1983 -> present)

- Definition of intelligence:
 - problem states and transitions
 - solutions found through search in state space
- Representation:
 - graphs of objects and relations
- Control: production system
 - Working Memory blackboard

 - procedural knowledgedeclarative knowledge Long-Term Memory

Soar: Water Jug Problem Example

Definition of intelligence:

5 gal.

3 gal.

Goal state: 3-gallon jug contains 1 gallon of water.

Fill

Representation in Soar

Graph

- data objects
- attributes & relations
- operators
- Working Memory (state)
- Long-Term Memory (knowledge)

Production System

- · Working Memory blackboard
- declarative knowledge what
- procedural knowledge how
 - rules
 - operators
- subgoal states

Processing Cycle

Executive Function (Psychology, Cognitive Neuroscience):

- update Working Memory from sensory and Long-Term Memory resources
- focus attention, inhibit distractors
- shift task context

Outline

The Standard Model for Cognitive Architecture

• Example: Soar

- Important Concepts:
 - Marr's Three Levels
 - Reactive vs Deliberative
- Architecture in NN / Deep Learning Networks
- Al Application: Conversational Agents

Marr's Three Levels of Abstraction

David Marr: Theoretical Neuroscience — Computational Intelligence what? Computational Intelligence

Computational Theory

What is the computation and by what principles is it accomplished?

Algorithm

What representations and algorithms are used to carry forth computation?

Implementation

On what physical hardware and firmware is the algorithm run?

Example: Stereo Vision

Cognitive Architecture: Deliberative Agent

Reactive vs. Deliberative

Reactive

automatic & strictly determined

modest internal state

implicit representations

Kahneman System 1

Example: thermostat

Deliberative

makes choices

rich internal state

explicit world models

Kahenman System 2

Example: building temperature management system

Reactive vs. Deliberative Building Temperature Controller

Building
Thermal
Model

Solar thermal
(collector)

Supply

Sup

Modular Model Predictive Controller cooling & predicted simplified heating trajectories mixed integer nonliear LTI-MPC optimization building model flows setpoint High fidelity simulation results temperatures nonlinear **Buidling Model**

Example: thermostat

Example: building temperature management system

Reactive vs. Deliberative

Reactive

modest internal state
implicit representations
automatic & strictly determined

Deliberative

rich internal state
explicit world models
makes choices

Alexnet

Architectural Elements

Layer dimensions, weights, nonlinearities

Organization

Layer connectivity

Purpose

Function approximation

Reactive or Deliberative?

Reasoning

• planning, constrained optimization

Cognitive Architecture

Outline

The Standard Model for Cognitive Architecture

Example: Soar

- Important Concepts:Marr's Three Levels

 - Reactive vs Deliberative

- Architecture in NN / Deep Learning Networks
- Al Application: Conversational Agents

Conversational Agent

Question answering task

"Alexa, who won the 1934 world series?

"The Saint Louis Cardinals beat the Detroit Tigers 4-3 in the 1934 World Series."

Why Are Conversational Agents So Dumb?

"Alexa, who won the 1934 world series?

"The Saint Louis Cardinals beat the Detroit Tigers 4-3 in the 1934 World Series."

"Alexa, who was the president then?"

"This might answer your question. The president of the United States is Donald Trump."

Cognitive Architecture for a Conversational Agent

Summary: Taxonomy

Eric Saund

- Research scientist in Cognitive Science and Al.
- Conversational Agents, Visual Perception, Cognitive Architectures.
- I build stuff.

Projects
Papers

Curiosities

Links
Contact

http://www.saund.org
saund@alum.mit.edu

Conversation