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Abstract—Effective object and scene classification and indexing depend on extraction of informative image features. This paper

shows how large families of complex image features in the form of subgraphs can be built out of simpler ones through construction

of a graph lattice—a hierarchy of related subgraphs linked in a lattice. Robustness is achieved by matching many overlapping and

redundant subgraphs, which allows the use of inexpensive exact graph matching, instead of relying on expensive error-tolerant

graph matching to a minimal set of ideal model graphs. Efficiency in exact matching is gained by exploitation of the graph lattice

data structure. Additionally, the graph lattice enables methods for adaptively growing a feature space of subgraphs tailored to

observed data. We develop the approach in the domain of rectilinear line art, specifically for the practical problem of document

forms recognition. We are especially interested in methods that require only one or very few labeled training examples per category.

We demonstrate two approaches to using the subgraph features for this purpose. Using a bag-of-words feature vector we achieve

essentially single-instance learning on a benchmark forms database, following an unsupervised clustering stage. Further

performance gains are achieved on a more difficult dataset using a feature voting method and feature selection procedure.

Index Terms—Graph lattice, subgraph matching, document classification, line-art analysis, CMD distance, weighted voting

Ç

1 INTRODUCTION

EFFECTIVE object and scene classification and indexing
depend on exploitation of informative image features.

Recent trends in computer vision emphasize the use of large
numbers of relatively simple features used for feature
vector comparison, bag-of-words voting, and image data-
base access using inverted indices [17], [26], [27]. An
important issue is the information captured by a feature.
While purely appearance-based features measure local
shape and texture properties, additional information is
found in spatial relationships among feature measurements
sampled at keypoints or interest points.

One way of encoding spatial configuration is through
graphs. Objects and scenes are modeled as parts (nodes)
and relations (links) [4], [11], [28]. An observed image
generates a graph of observed parts and their relations to
other parts in the local neighborhood, and recognition is
performed by subgraph matching. Subgraph matching
poses two difficulties. First, it is known to be exponentially
expensive. This problem is to some extent alleviated by use
of attributed graphs, that is, graphs whose nodes contain
properties that constrain possible matches. Nonetheless,
subgraph matching has been limited to relatively small
subgraphs due to the second difficulty, namely, noise and
variability cause observed graphs to deviate from ideal

models. This variability demands use of error-tolerant, or
inexact, graph matching techniques, which drastically
increases matching cost and largely removes the advantages
of attributed graph matching because possible matches of
differently labeled nodes must now be explored. Conte et al.
provide a thorough review of these issues [6].

This paper shows that it is possible to exploit a rich
vocabulary of image features that encode local geometrical
structure through exact attributed graph matching, which
can be made extremely efficient through the use of a graph
lattice data structure. Features correspond to subgraphs,
each of which encodes a limited amount of information
about spatial configuration in a local neighborhood. By
supporting large numbers of possibly overlapping and
redundant feature subgraphs, image structure can be
captured through exact graph matching even in the
presence of noise and variability. The approach is analo-
gous to shingling in text retrieval [12]; this paper extends
the concept to two dimensions.

Fig. 1 illustrates the key concept of organizing subgraphs
as a lattice while regarding them as image features which
are measured by counting mappings (exact matches) to
observed data graphs.

The idea is applicable to practical problems in classifica-
tion and indexing of documents containing consistent
subgraphs. Our focal problem is forms documents that
have sparse and inconsistent textual content due to variable
filling in of data fields, but which usually contain a network
of rectilinear rule lines serving as region separators, data
field locators, and field group indicators (Figs. 2 and 14).
Rule lines intersect each other in well-defined ways that
form junction and free-end terminator graph nodes. These
are natural candidates for the nodes of an attributed graph
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representation (a data graph), with graph links arising from
line segments linking junctions.

Document type classification1 is a principal step in
virtually all automatic document processing systems.
Features used for forms classification include text content,
connected component attributes, Haar filters, zonal densi-
ties, texture filters, and line-art locations and junctions.
Methods for forms classification include string matching,
template matching, nearest neighbor, decision trees, gen-
erative feature density models, and neural networks [16],
[19], [20], [24]. Chen and Blostein [5] provide an extensive
survey. By and large, most prior work emphasizes
sophisticated learning algorithms applied to simple, easy-
to-compute features.

One of the important issues in pattern classification is the
number of training samples required to build a model. In
commercial scenarios, customers frequently provide only
one or a small number of examples of each doctype. Yet
existing methods require at least 10 exemplars per category
to build distributional models leading to robust perfor-
mance given the simple features they are based on [20]. Our
practical aim is to enable single-exemplar doctype learning,
which may entail automatic unsupervised clustering of
forms images into their correct types.

Rectilinear lines are also found in abundance in other
image domains, for example, organization charts, maps,

and engineering drawings. Every architectural firm has its
own layout for its drawing title blocks that define various
fields such as project name, drawing name, drawing
number, and so on. The ability to train with one example
and then recognize the distinctive layout identity and fields
of a title block is of significant practical interest.

A graph matching approach to document genre classifi-
cation was used by Bagdanov and Worring. Each document
category is modeled as a configuration of layout elements
(e.g., paragraphs and other zone-level items, which can be
problematical to find) whose (variable) spatial relations are
modeled with a single first-order random graph (FORG).
FORGs model distributions of families of graphs and
evaluation against an observed data graph is even more
complex than inexact subgraph matching [2].

Two notable examples of encoding geometry in localized
features have been demonstrated in the document image
analysis domain. Nakai et al. [15] perform indexing of large
document image databases using localized features that
encode the spatial configurations of word blobs. Amit and
Geman [1] perform character shape classification using
forests of simple features that encode configurations of edge
events; the vocabulary of such features is grown from
simple to complex based on training data. The present work
follows this vein. The idea of growing a vocabulary of larger
subgraphs from smaller ones was raised for the document
character and symbol recognition problem by Sidere et al.
[25]. Other work in bringing bag-of-words text retrieval
methods to image retrieval observes that a large vocabulary
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Fig. 1. Overview of the main idea. For the application of document forms categorization and clustering, image line art is processed to produce data
graphs whose nodes are line-art junctions. A feature vocabulary is constructed, comprised of subgraphs. Mapping (exact matching) of these
subgraphs to a data graph is made efficient by organizing the subgraphs as a graph lattice. Parent-child relations in the graph lattice build larger
subgraphs from smaller ones. This feature vocabulary can be used in a variety of ways; one way is to construct feature vectors based on counts of
mappings of subgraphs onto observed data graphs; a second way is through indexing and weighted voting (not depicted). Combinatorial explosion in
the number of possible subgraphs of increasing size (level) is managed by selecting from actually observed subgraphs in a sample dataset.

1. Known in the trade as doctype classification.



of structural features does provide for robustness through
the use of statistical methods for matching [9].

Messmer and Bunke [13], [14] introduced an approach to
matching related model subgraphs to data graphs by
precomputing a linked representation for shared sub-
graphs. This was applied to error-tolerant subgraph
matching. The present work can be viewed as taking this
approach to an extreme by representing a multitude of
overlapping and related subgraphs linked in lattice organi-
zation. Shervashidze et al. [23] considered the set of
subgraphs up to size k as kernels for graph comparison,
but did not leverage a lattice organization nor node
attributes associated with an application domain like
document image analysis.

The paper is organized as follows: Section 2 describes
the use of subgraphs as image features for bag-of-words
clustering and classification using fixed-length feature
vectors. We develop methods for reweighting feature
counts and for comparing feature vectors. On a benchmark
forms dataset, we show that a feature representation gains
discriminative power when it incorporates larger features
formed by grouping primitives into subgraphs. Unsuper-
vised clustering is successful such that following the
clustering stage, a single labeled instance of each category
yields a correct forms classifier. Section 3 shows how

processing may be made efficient by use of a graph lattice
architecture. Efficiency is important to maintaining large
vocabularies of graph-lattice features. Organized as a
lattice with appropriate bookkeeping, each subgraph
requires only a small incremental amount of work to
compute its mappings onto a data graph. Section 4
introduces a more difficult dataset obtained under produc-
tion document processing conditions. For this data, we
demonstrate a voting approach to using subgraph features
that exploits their location and dimensional attributes, and
we introduce a method for advantageously extending the
subgraph vocabulary to include larger subgraphs repre-
senting more precise features.

2 DATA GRAPHS AND SUBGRAPH FEATURES FOR

RECTILINEAR LINE-ART ANALYSIS

2.1 Noise and Variability in Line-Art Data Graphs

This paper refers to two data corpora. A standard bench-
mark set for forms classification and data capture is the
NIST tax forms database [8] consisting of 11,185 images of
size 2; 560� 3; 300 pixels. These are representative of
20 categories of scanned hand filled and typed United
States Tax Forms. A second dataset consists of approxi-
mately 6,000 standardized dental forms scanned under
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Fig. 2. (a) Section of a NIST tax form image. (b) The data graph (junctions and links) extracted from it. Note errors of two missing T-junctions.



production document processing conditions. The properties
of this dataset are discussed in Section 4.

The NIST dataset contains sufficiently distinct categories
that existing supervised classifier methods are able to
perform 100 percent correct classification [19], [20], [24].
However, these systems require tens or hundreds of labeled
training samples. Instead, it would be highly preferable to
achieve single-instance training, perhaps preceded by an
unsupervised clustering stage.

Effective handling of image noise and variability is one
of the key underlying issues in all domains of computer
vision. Fig. 2a shows, in a NIST tax forms image, that line
art is often noisy and distorted. Using standard as well as
specialized image processing approaches [18], we can
extract rule lines and their intersections at junctions with
approximately 95 percent reliability. In a typical form of
250 terminations and junctions, we will therefore see about
10-15 errors. Typical errors are substitution of T-junctions
and X-junctions (actually + junctions in upright orientation)
and vice versa, introduction of spurious terminations
where line art is broken by image noise, and failure to
identify L-junctions.

By enumeration of possible configurations, it is clear that
rectilinear line art gives rise to 13 junction/termination
types, as shown in Fig. 3. For an observed line-art image,
after extraction of rule lines it is straightforward to build a
data graph consisting of attributed nodes and links among

them, as shown in Fig. 2b. A data graph node’s attribute is
the index of its junction/termination type.

Junction-link relations define the topology and direc-
tional geometry of an observed line-art image. Dimensional
geometry—the lengths of rule lines between junctions—can
be important to encode as well. Dimensional properties are
continuous valued in our target domain and therefore
complicate mapping and matching in discrete graphs.
Hence, in this study we encode dimensional attributes of
feature subgraphs, as well as their locations in an image,
separately from their node-link structure and junction
attributes. Dimensional geometry and location attributes
of subgraph features are exploited in Section 4.

2.2 Primitive Junctions Are Not Effective Image
Features

As a baseline step toward considering subgraph features,
we may ask whether the counts of primitive junction types
(i.e., subgraphs of size 1) are sufficiently informative to
distinguish NIST tax forms. Fig. 4 shows that they are
not—at least not in a straightforward manner. This figure
shows a histogram of pairwise similarities between 1,000
of the 11,185 NIST images based on comparing vectors of
junction counts. Two primary modes are apparent. A high-
similarity mode derives from forms of the same type,
while a low-similarity mode derives from forms of
different type. Note that the modes are not clearly
separated, which means that there is a range of confusion
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Fig. 3. The 13 junction types in rectilinear line art.

Fig. 4. Histograms of pairwise similarity scores based on primitive junction type counts for 1,000 US tax forms images, comprising 20 categories,
drawn from the 11,185-image NIST corpus. In each graph, two histograms are plotted, one for within-category similarity scores, the other for
between-category similarity scores. Two measures for vector similarity are shown. Top: cosine distance; Bottom: CMD similarity measure described
in Section 2.5. In each graph, the number of histogram buckets is 600. The range of similarity values shown is ½0:95; 1� for cosine distance, ½�2; 1� for
CMD similarity, where 1 (rightmost histogram bucket) means identical feature vector. The confusion region indicates that no threshold similarity
score can be set to correctly classify the images based on primitive junction type counts alone.



about whether two images should be assigned to the same
category. This confusion region is due to the noise and
variability in these images, given that some pairs of
different forms happen to be designed to contain approxi-
mately the same number of terminations, L-junctions,
T-Junctions, and crossings (X-junctions). There are many
possible ways to assess the similarities/differences be-
tween feature vectors—in this case between 13-dimen-
sional vectors of junction type counts. The similarity
measure used here, called common-minus-difference
(CMD), is described below. Euclidian distance and cosine
distance both produce less distinct histogram modes.

Ideally, highly informative feature vectors and similarity
measures would produce two well-separated modes in the
histogram. This would enable a very straightforward
greedy algorithm for clustering and classifying images,
namely, if pairwise similarity is less than a threshold, then
the images are in the same category, and if greater than a
threshold, they are in different categories. If the same-
category and different-category modes were well sepa-
rated, threshold values could be determined from the
histogram automatically.

2.3 Subgraph Mappings as Image Features

More complex features are obtained by considering not
simply counts of primitive junctions, but counts of pairs,
triples, and larger collections of junctions. This is in some
ways analogous to the use of higher order statistics in image
texture analysis [10]. Junction pairs correspond to second-
order, triples to third-order statistics, and so on. Given the
constraints of how junctions may link to one another, there
are 98 ways that the 13 primitive junction types may be
grouped pairwise, as suggested in Fig. 5a. Beyond size two,
the number of possible subgraphs grows exponentially with
subgraph size. Larger subgraphs provide increasing con-
straints on how the primitive junctions in the observed data
graph are linked, up to the largest possible subgraph, which
is the data graph itself. Feature vectors incorporating larger
subgraphs can therefore be more informative than primitive
junction counts.

The number of possible subgraphs increases exponen-
tially with subgraph size, but fortunately the space of
possible subgraphs is only sparsely populated by sub-
graphs actually observed in data. In adding subgraph
features, it is useful to utilize only these, and we may
comfortably omit nonobserved subgraphs from the feature

vector. Fig. 5b presents a few of the many subgraph features

of different sizes observed in NIST tax form data.
Section 4 introduces a strategy for entertaining larger—

and therefore potentially highly discriminative—subgraphs

based on observed data graphs. But first let us consider the

results of extending the feature vector to count subgraph

matches for subgraphs of sizes two, three, and four. The

first step in the process is to build the feature representa-

tion. This starts by choosing at random a subset of sample

observed data graphs, which would be expected to include

representatives of most subgraphs that the full dataset will

contain. This subset should contain one or a few examples

of each image category. For these, we extract and catalog

every subgraph of the target size. Fig. 6 shows the number

of subgraphs encountered per subgraph size as a function

of sample size for NIST images. The counts plateau

sufficiently at 50 samples that this number of images

suffices to build a useful vocabulary of subgraphs for

clustering and classification.

2.4 Reweighting Mapping Counts for Overlapping
Subgraphs

Given a feature measurement vector defined by subgraphs

of size 1 to D, where D is a maximum subgraph size, we

measure counts of matches to an observed data graph. Each

match produces a mapping of subgraph nodes to data

graph nodes. One such mapping is illustrated in Fig. 10.

Efficient means for performing the requisite subgraph

matching is described in Section 3.
In our experience, straight subgraph match counts do not

constitute a good feature vector for comparing data graphs.

The reason has to do with overweighting of larger

subgraphs. Fig. 7 illustrates. For larger subgraph features,

a very large number of highly overlapping subgraphs are

matched. Any node (line-art junction) in the data graph will

participate in many more high-order subgraphs than low-

order ones. This leads to instability in large numbers of
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Fig. 5. (a) Six of the 98 size 2 groupings of primitive junctions. (b) A few
larger subgraphs found on tax forms.

Fig. 6. Consideration of the number of distinct subgraphs contained in
data graphs as a function of number of data graphs sampled from a
larger corpus. The table inset shows counts of distinct subgraphs of
sizes 1 through 7 for number of NIST document samples equal to 50 and
400. The graph plots number of distinct subgraphs encountered after
N documents as a percentage of the number of subgraphs encountered
in 400 documents. Plateauing of these curves indicates when enough
samples have been seen to capture a large fraction of the consistent
subgraphs present in the corpus.



match counts as a result of even small numbers of errors in

detecting primitive junctions.
A solution is to reweight subgraph match counts

according to overlaps in the junctions they map to. Let dfi
denote the ith subgraph feature of size d primitive

junctions, in a set of features. Let dPi denote the set of

mappings of dfi onto an observed data graph. jdPij is the
number of such mappings. Each junction in an observed
data graph is then given equal weight toward building a
feature vector of normalized counts of mappings of
subgraph features. A junction’s weight is distributed over
the subgraph matches that cover it. The vector of mapping
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Fig. 7. (a) The circled junction in the data graph is covered in overlapping ways by mappings by the subgraphs shown, plus more not shown. Such
overlaps cause junctions or regions to become unevenly represented in a mapping count feature vector. (b) In the junction-normalized reweighting
method, the multiple mappings onto each observed junction are counted and used to reweight each mapping’s contribution to the match count vector.



counts is normalized through these weights. This Junction
Normalized Mapping Count operates independently for sets
of subgraphs in the graph lattice having the same size. In
other words, all of the subgraph mappings dPi for
subgraphs of size d are computed, and these are used to
normalize mapping counts for all mappings of these
subgraphs. (Table 1 provides a summary of notation used
in this paper.)

For subgraph size d, a weighting dwj is computed for
each junction j in the observed data graph:

dwj ¼
1

jdP : jj
; ð1Þ

where jdP : jj refers to the number of mappings from all
subgraphs of size d that include junction j.

Then, the junction-normalized mapping count element vi
for subgraph fi of size d is

vi ¼
X
dPi

X
j 7! dPi

dwj; ð2Þ

where j 7! dPi means summation over data graph junctions j
that are mapped to by subgraph fi. Through this reweight-
ing, if a junction is mapped only once or a few times, it gives
a strong contribution to the counts. If, on the other hand, a

junction is covered by many overlapping mappings, these

mappings must all share that junction’s contribution

weight. The junction normalization formula prevents

subgraph features from dominating the feature vector when

they happen to have many overlapping mappings, which

can occur, for example, in grids or other repeating line-art

image structure.

2.5 CMD Distance for Comparing Mapping Count
Feature Vectors

Another consideration is the similarity measure used to

compare junction-normalized feature vector (subgraph

match) counts. Obvious choices are euclidian distance and

cosine distance. We have found that neither of these works

as well as another similarity measure, CMD:

sð �v1; �v2Þ ¼
P

iðminðv1;i; v2;iÞ � jv1;i � v2;ijÞ
maxðjG1j; jG2jÞ �D

; ð3Þ

where Gk is the size (number of junctions) of data graph k

and D is the number of subgraph sizes considered in the

junction-normalized feature vector. While the popular

cosine distance is designed to compare distributions or

relative values of vector elements, CMD distance also

compares absolute magnitudes on an element-by-element
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TABLE 1
Notation and Terms



basis. Whereas cosine distance will give credit to any pairs
of feature elements that both have positive count, the
behavior of CMD is more strict. Positive credit is given to
the extent the count is similar, but negative credit is given to
the extent the counts differ. The normalization term of the
CMD distance depends not just on the number of feature
vector elements, but on the maximum possible value each
element could take. Thus, it depends on the sizes of the data
graphs being compared. The range of the CMD similarity
measure is �2 (minimum, least similarity) to 1 (maximum,
best similarity).

2.6 Subgraphs of Increasing Size Are Effective
Image Features

Under the junction-normalized feature count and the CMD
similarity score, we find that higher order subgraph
features do indeed lead to improved discrimination.
Fig. 8a presents pairwise similarity histograms for feature
vectors up to subgraph size 4. For the NIST data, beyond
subgraph feature size 2, different image categories are
clearly separated. Under this representation using feature
vectors comprising subgraphs of sizes 1-3 or 1-4, a simple
greedy clustering algorithm correctly sorts all 11,185 NIST
images into their respective 20 categories, with one category
split into two. (This category is US Tax Form 2441, which
contains only 65 junctions.)

Clustering results are presented in Fig. 8b. Clustering
uses two automatically computed thresholds. If an observed
data graph’s feature similarity to a cluster’s centroid

exceeds the upper threshold, the document is added to
that cluster. If feature similarity falls below a lower
threshold for all existing clusters, a new cluster is started.
Otherwise, the image is put aside into an “unknown”
category until all images have been considered. This
process is iterated with the unknown images until no more
can be assigned to a cluster based on the upper threshold.

Finally, each unknown image is assigned to the best-
matching cluster.

Quality of clustering is scored as the edit distance to the
ground truth correct assignment of images to categories.
One edit operation is tallied for each incorrectly classified
document, and one edit operation is tallied for merging any
two clusters representing the same ground truth category.
Under this procedure, forms clustering and classification is
almost 100 percent correct for subgraphs of size 3 and

larger; the only error is an extra cluster duplicating one of
the ground truth categories. As reported in [22], to our
knowledge this is the best result reported to date on the
benchmark NIST forms dataset, improving even on
supervised classifiers which by definition are supplied
with a known number of categories [19], [20], [24].

3 GRAPH LATTICE DATA STRUCTURE

3.1 Nodes and Struts

A program architecture for computing features represent-
ing large numbers of subgraphs should support two main
purposes: 1) efficient computation of subgraph (feature
element) matches to observed data graphs, and 2) effective
construction of more complex features (larger subgraphs)
from smaller ones. The graph lattice fulfills these needs.

The basic element of a graph lattice is the graph lattice
node, as distinguished from a node of a data graph (which
is in this domain a line-art junction or termination). A graph
lattice node represents a subgraph and its relations to larger

and smaller subgraphs in the lattice. Additionally, it can
maintain storage of its subgraph mappings onto data
graphs. As a matter of terminology, let us call smaller
subgraphs parent nodes, and larger subgraphs generated
from them by adding junctions, child nodes. In general, two
subgraphs of arbitrary size could be conjoined to create a
larger subgraph, perhaps of size the sum of the sizes of
parent nodes, or perhaps smaller if overlap is allowed. The
present work does not consider such a general mechanism.

Instead, we only support single-level links in the graph
lattice representing the accretion of a single junction (data
graph node) at a time. In other words, child graph lattice
nodes are always subgraphs that are larger by one than
their parents.

The relations among graph lattice nodes are maintained
by struts (see Fig. 9). The purpose of a strut is twofold. First,
it maintains the junction index mappings between a parent
and child node. In general, any graph lattice node will index

its component junctions in arbitrary order, and a strut keeps
these organized between parent and child graph lattice
nodes. Second, a strut indicates the primitive type, place-
ment on the parent, and links for the junction that
constructs the child from the parent.
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Fig. 8. (a) Histograms of pairwise CMD distances for 200 NIST
documents based on feature vectors of subgraph match counts, ranging
from size 1 subgraphs only through subgraphs of sizes 1 through 4.
Small vertical lines show automatically computed thresholds (clearly
within-cluster and start-new-cluster) for greedy clustering. (b) Clustering
results for 11,185 combined NIST SpecialDatabase6 and SpecialData-
base2 images.



3.2 Sweep-Upward Matching

Matching of the complete set of nodes in a graph lattice to
an observed data graph is efficient because each graph
lattice node (subgraph) can be incrementally mapped
based on mappings of its parents (see Fig. 10). Processing
proceeds bottom up, layer-by-layer, in a sweep-upward
algorithm. At layer subgraph-size ¼ d, for each subgraph
feature node dfi, subgraph mappings are computed as
follows: Choose arbitrarily one parent node at layer d� 1.
The strut to this parent defines the possible mappings of
dfi onto the data graph, as these can be inherited and read
off directly from the mappings stored by the parent. The
strut also defines the single extra data graph junction that
node dfi contributes. This method essentially follows the
approach used in the VF2 subgraph matching algorithm of
Cordella et al. [7]; it is easy to test the data graph to see if
it contains such a junction, properly linked, to support a
complete mapping of dfi. In our Java implementation,
using the sweep-upward algorithm, the computation of
the junction-normalized feature vector for a graph lattice
of 2,953 graph lattice nodes (subgraphs) averages 43 milli-
seconds per data graph2 over a set of typical NIST tax
form documents. Using the sweep-upward algorithm,
subgraph matching takes approximately 1 microsecond
per subgraph for subgraphs ranging up to size 4; this is a
speedup of better than 10� over brute-force attributed
subgraph matching.

3.3 Growing a Graph Lattice

This approach trades storage necessary to hold the graph
lattice against faster matching time via the sweep-upward
algorithm. The number of possible subgraphs grows ex-
ponentially with subgraph size. This explosion is managed

through the judicious selection of a relatively smaller
number of subgraphs represented explicitly as graph lattice
nodes, among the space of all possible subgraphs at various
sizes. Any data domain will reflect characteristic patterns as
more or less commonly occurring subgraphs, while many
other possible subgraphs will not be observed at all. Thus,
the selection of graph lattice nodes constitutes knowledge
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Fig. 10. In the sweep-upward algorithm, subgraph mappings are
inherited from the previously computed subgraph mappings at the
parent level. Struts maintain bookkeeping data structures, enabling only
a quick check of whether the incremental junction is present in the data
graph (upper mapping arrow).

Fig. 9. A graph lattice consists of layers of subgraphs related by addition or deletion of primitives (junctions, in the case of rectilinear line art). These
relations are maintained through struts maintaining the mappings and linkages formed by incrementally added primitives.

2. Single core, 2.4 GHz PC, Java.



about the data domain in the form of the subgraph features
maintained in the graph lattice.

As a general framework, a suitable approach to con-
structing graph lattice representations is based on the
following idea: Incrementally construct, evaluate, and
selectively accept Candidate graph lattice nodes, which in
turn accrete to an existing simpler graph lattice of Accepted
nodes, based on observed examples (see Fig. 11). The
algorithm is to iterate the following steps:

Step 1: Generate Candidate graph lattice nodes from Accepted
graph lattice nodes and observed data.

Every mapping of a Level d subgraph dfi onto an
observed data graph can serve as a seed for spawning new
Level dþ 1 graph lattice nodes that are supergraphs
(children) of dfi. Each primitive junction linked to the
perimeter of the subgraph’s mapping can spawn one of
these children. Step 1 of the graph lattice construction
algorithm is to examine mappings of Accepted graph lattice
nodes onto observed data graphs and spawn new Candi-
date graph lattice nodes based on actual supergraphs
encountered in the data. This step may involve mapping
the existing graph lattice to previously seen data graphs or
to new, previously unobserved data graphs. This process
involves some bookkeeping to follow subgraph mappings,
detect duplicate Candidates nodes, and build struts to all of
a Candidates nodes’ parents at Level N .

Step 2: Select Candidate graph lattice to promote to Accepted
graph lattice nodes

The second step of the graph lattice construction
algorithm is to select certain Candidate graph lattice nodes
for promotion to Accepted status. The forms image
clustering work reported in Section 2 employs a trivial
candidate selection strategy: Accept all Candidate nodes up
to a certain level. Section 4 presents a feature selection
strategy designed to accept many fewer Candidates,
specifically only maximally distinguishing features for a
set of model graphs.

Depending on the acceptance strategy used in Step 2,
various stopping criteria may become meaningful, including:

1. The graph lattice contains a threshold number of
Accepted graph lattice nodes at a given level.

2. The graph lattice contains a threshold number of
Accepted graph lattice nodes in total.

3. The list of Candidate graph lattice nodes is exhausted.
4. Quality measures for Candidate nodes falls below a

threshold.

For the NIST dataset, the time required to build a graph
lattice up to a layer of subgraphs of size 4 from the data
graphs of 50 randomly sampled images is 3 seconds. To
build a graph lattice of size 4 from a sampling of 1,000
NIST images takes 50 seconds, resulting in 4,560 graph
lattice nodes.

4 FEATURE VOTING

4.1 Voting Motivations and Methods

An alternative in pattern classification to comparing fixed-
length feature vectors is feature voting. Classification takes
place by indexing into a set of exemplars, or model data
graphs. One or more exemplars may be provided per
category. Feature voting is an attractive way to use
subgraph features for several reasons.

First, the graph lattice data structure and growing
algorithm support an efficient mechanism to build and
match large feature vocabularies that include larger sub-
graphs and, in particular, subgraphs specializing to unique
or highly indicative features of the data categories. With
increasing graph lattice size, most subgraph features will
not match to any given test data graph, and hence the match
feature vector will be sparse. Through feature voting the
classification procedure avoids wasteful computation on
large numbers of 0 entries in the feature vector, which
would arise from absent features.

Second, by the use of inverted indices, feature voting
facilitates scaling to large numbers of model categories by
shifting from linear feature vector scoring of every
category, or, alternatively, the use of complex hashing
schemes, to vote-based consideration of only categories
that obtain votes.

Third, under the graph lattice approach to subgraph
matching, feature voting allows more precise exploitation of
features through testing of location and dimensional
attributes of subgraph features that share common topolo-
gical structure.

Feature voting is illustrated in Fig. 12. Assume a graph
lattice of subgraph features has been constructed. Initially,
each model data graph representing a set of target
categories is matched to the subgraph features using
the sweep-upward algorithm. For each subgraph match,
the mapping from line-art junctions and terminations of the
feature subgraph to the line-art junctions and terminations
of the model data graph is stored. Then, when a test data
graph is presented, it is matched to the subgraph features
using the sweep-upward algorithm. For every subgraph
mapped, a vote is recorded for each of the model data
graphs that were also mapped by that subgraph.

4.2 Increasing Feature Precision with Dimensional
Geometry

Two modifications are introduced to enhance this basic
method. The first is to constrain votes only to truly
corresponding subgraph structure in the model and test
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Fig. 11. A graph lattice can be constructed by promoting Candidate
nodes to Accepted status. Accepted nodes are eligible to spawn more
candidates.



data graphs. Constructed with struts, the graph lattice
representation for families of subgraphs in the rectilinear
line-art domain retains only topological and directional
geometrical properties—that is, which typed junctions are
connected to which others at their respective attachment
points. Identical subgraph structure might be found on
test and model data graphs corresponding to geometri-
cally and positionally very different image features. It is
important to prune these false matches when voting. This
can be done by introducing dimensional geometry and
location as filters on votes for corresponding subgraphs.
Fig. 13 illustrates an effective method for doing this. Each
mapping between a feature subgraph and a data graph
retains a geometric signature and location for the
configuration of line-art junctions and terminations of
the subgraph as it occurs in the data graph. If a given
subgraph feature maps onto the data graph in multiple
places, each becomes a separate mapping that retains its
own geometric signature and location. It has proven
sufficient to maintain a configurational signature based on
the absolute values of ðx; yÞ displacement of each junction
or termination from the centroid of junctions/termina-
tions. The centroid itself is an adequate representation for
global positioning of the subgraph on the model or test
data graph. Filtering of Candidate nodes’ mappings is
performed based on thresholds of differences between the
signature components between model and test data
graphs. To achieve scale invariance, displacements are
normalized by the maximum of height and width of the
subgraph occurrence in the data graph.

4.3 Weighted Voting

A second modification is to perform weighted voting
instead of uniform voting. This idea is based on the
observation that in many datasets it is typical to encounter
subgraph features representing image structure that is
common across many models, while other subgraph
features will be rare and therefore highly indicative of their
respective models. It is possible to weight the latter more
highly through the use of a weighting factor ! for each
feature match vote:

!i ¼
1

jfi 7!Mj : ð4Þ

jfi 7!Mj is the number of model data graphs that subgraph
feature fi maps onto. (Equivalent notation for jfi 7!Mj isP

j:fi 7! mj
1, where M is the set of all model data graphs. If

jfi 7!Mj is 0, then some suitably small number is used in
the algorithmic implementation.) In practice, we have
observed that the use of weighted voting improves accuracy
slightly over uniform voting, but it improves speed
considerably because the selective graph lattice growing
algorithm described in Section 5 chooses more selective
features contributing fewer votes for each test image.
Representative processing time for forms classification into
208 categories by weighted voting is 50 milliseconds per
data graph for a graph lattice of 7,600 subgraph features,
excluding image processing time to compute the data graph
itself (dataset discussed below).

Some subgraph features, especially smaller ones, tend to
map to sites common across very many model data graphs.
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Fig. 12. Illustration of weighted voting. Each subgraph feature initially is matched to all model data graphs (solid arrows). The junction mapping of
each match is recorded. Then, when a test data graph is presented, each subgraph feature is matched (dashed arrow), and each mapping is
compared with mappings to the models. A weighted vote is tabulated for each model that holds a mapping meeting threshold tolerance on
correspondence to the test data graph mapping on location and dimensional attributes.



Their vote weights are small, and the memory requirements
for maintaining the mappings become large. Therefore, for
practical purposes we set a threshold (value ¼ 100) on the
maximum number of mappings stored and, hence, mini-
mum feature weight for a subgraph feature to participate in
voting. The mappings of features falling below this thresh-
old are discarded.

4.4 Weighted Voting Performance: Simple Graph
Lattice

While the subgraph feature vector comparison method of
Section 2 performs extremely well on the benchmark NIST
dataset, classification of real-world data can prove more
challenging. One such dataset employed in this study is a
corpus of 6,247 American Medical Association (AMA)
dental claims forms encountered in a production document
processing application. The line art from these forms is
made available at [21].

The AMA dental forms dataset includes 208 labeled
blank forms which are used to build the graph lattice
feature vocabulary, and the line art from 6,247 scanned
forms to be classified. The forms fall into four major
categories, with a few dozen subcategories and a few dozen
other minor categories. But, due to business requirements,
the application conditions prescribe 208 categories of
subtypes, for which one data sample, or model form, is
provided for each category. It is necessary to classify the
forms as accurately as possible because a subsequent
processing step involves identifying data fields which
depend on alignment with a correct form template. The
problem is complicated because some of the subtypes are
distinguished by very subtle differences, as seen in Fig. 14,
and other subtypes are actually duplicate scans of the same
underlying form subtype. We estimate that the true number
of categories is approximately 156. Only about half of these
subtypes are represented in the test dataset.

A ground truth ranking of model categories has been
provided, the details of which lie outside the scope of this
investigation. To summarize, however, a semi-automated
process assigns one or more candidate categories to each
document along with a confidence score. A manual
verification step allows correction of assignments and
adjustment of confidences. From the confidence scores, a
ranking for ground truth category membership can be
derived. But, as can occur in real-world applications,
the ground truth is not 100 percent correct, nor can it be
because of ambiguity due to apparent duplication of some
of the model categories. The semi-automated scoring
process includes a reject procedure such that a large
fraction of images are given reject status, mainly due to
poor scanned image quality, leaving a total of 4,943 images
for testing and evaluation of our classification algorithms.

A suitable performance measure for classification accu-
racy is based on comparing the rank ordering of category
model matches to image data graphs between ground truth
and classifier outputs. The performance measure applies
under either the feature vector comparison or weighted
voting methods. Let rg;c be the ranking assigned by a
classifier to the model assigned top rank in the ground
truth. Let rc;g be the ranking in the ground truth of the
model assigned top rank by the classifier. Then, the
performance measure � is

� ¼ 1

2

1

rc;g
þ 1

rg;c

� �
: ð5Þ

Under this performance measure a maximum score of 1 is
given when the top-ranking categories agree, but some credit
is given when the top ranking category of the ground truth or
classifier output scores highly in the complement rankings
(classifier or ground truth, respectively). Equation (5) applies
to strictly ordered rankings, which normally obtains under
weighted voting. Under uniform feature voting there may be
ties, with two model categories receiving the same number of
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Fig. 13. Portion of two model data graphs (see Fig. 14) both of which match, topologically, a particular subgraph feature of size 5. Spatial
configuration attributes of a subgraph feature mapped to a observed data graphs are captured by the absolute values ðjdxj; jdyjÞ of displacements of
line-art junctions from their centroid, normalized by maxð�x;�yÞ.



votes. The performance measure can be extended to these
cases by discounting each term by the number of models
vying for the same rank as follows:

� ¼ 1

2

1

jrg;cj
1

rc;g
þ 1

rg;c

� �
; ð6Þ

where jrg;cj is the number of categories assigned that
ranking.

Table 2 presents classifier results on the AMA dental
forms corpus for all methods described in this paper. Let us
concentrate first on fixed feature vector comparison and
weighted voting results for subgraph features constructed
exhaustively up to a fixed size. Under the fixed feature
vector comparison method described in Section 2, Test pairs
1/5, 2/6, 3/7, and 4/8 show that the CMD distance clearly
outperforms cosine distance.

Classifier performance clearly improves as the size of the
subgraph feature vocabulary increases from subgraph
sizes 2 through subgraph size 5, which are obtained by
expanding exhaustively to larger subgraphs (Tests 1-4).

Beyond this, the weighted voting method clearly shows
an improvement in performance over the fixed-length
feature vector comparison method, as shown in Test pairs
2/15, 3/21, and 4/27. (The degradation in performance of
weighted voting at subgraph size 2 (Test pairs 1/9) is due
primarily to the fact that many such subgraph features are
discarded due to their low vote weight, as discussed above.)

5 SELECTIVELY GROWING A DEEPER GRAPH

LATTICE

Section 3.3 presents an overall method for growing a
vocabulary of subgraph features in a graph lattice.
Iteratively, Candidate subgraph features are promoted to
Accepted status, then expanded to create new Candidate
subgraphs based on observed model data graphs. This

method leaves available many options for the selection
strategy for deciding which Candidates to promote.

Clearly, candidate subgraph features should be pro-
moted that will be most informative for the classification
task. Brown [3] presents an information theoretic frame-
work for feature selection for pattern classification.
A principled objective is to maximize the conditional
entropy of assignment of test samples to models, given
measured features, but minimize interaction information, or
redundancy, among the features themselves. This is again
measured through conditional entropy given ground truth
sample categorization.

This objective is aligned with the following strategy for
prioritizing and iteratively accepting Candidate subgraph
features based on their ability to distinguish among
different model categories, given the current set of
Accepted features. In particular, each Candidate feature fi
is given a score zi:

zi ¼

P
j;k

!i if fi 7! mj

and fi 67! mk

and jfi 7!Mj >¼ 2
0 otherwise

8>><
>>:

�j;k
; ð7Þ

�j;k ¼
X
i0

X
j;k

!i0 if fi0 7! mj

and fi0 67! mk

0 otherwise;

8<
: ð8Þ

where fi 7! mj means that feature fi does map onto modelmj

under location and dimensional configurational constraints,
and fi 67! =mk means that feature fi does not map onto
model mk. In other words, the presence of feature fi is a
distinguishing feature in favor of model mj but not mk. The
expression �j;k sums the weights of distinguishing features
among the vocabulary of already accepted subgraph
features between models mj and mk, and thus indicates
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Fig. 14. Four exemplar model images from a set of 208 categories of AMA dental claims forms. While some forms are very distinct, others are
different only in subtle details. Some subtle differences occur in the qualitative presence or absence of small line-art structure while others are minor
dimensional differences in placement of rule lines.



the “need” for additional features to be recruited to
distinguish these models. ! comes from (4). The graph
lattice growing procedure iterates some number of times,
each time promoting the highest scoring Candidate sub-
graph feature.

A third aspect to note in (7) is that an additional
condition is imposed to gate the promotion of Candidate
features to Accepted status. A subgraph feature is only
promoted if it maps to at least two models. This criterion
inhibits promotion of subgraph features that match to noise
elements in the model samples on the assumption that
different samples are unlikely to share noise in common.

5.1 Weighted Voting Performance: Selectively
Grown Graph Lattice

Table 2 presents performance results for feature vocabul-
aries grown by promotion of different numbers of Candidate
subgraph features, starting with a graph lattice grown to

accept all subgraphs observed in the model dataset
exhaustively up to some size (2, 3, 4, or 5). (The explosion
of size 6 subgraphs makes it prohibitively expensive to
generate the Candidate node set that would be required to
selectively add subgraph features from an exhaustive set
of subgraphs up to size 5.) As shown clearly in Test
sequences 9-14, 15-20, and 21-26, the feature selection
strategy described above is generally effective in growing
vocabularies that lead to better classification accuracy for a

given feature set size.
However, we do observe that accuracy on this dataset

does not always increase with the addition of more
subgraph features. For example, best accuracy is achieved
with a graph lattice grown exhaustively to subgraph size 4
and then grown selectively to add 500 more subgraph
features (Test Number 25). This is slightly more accurate
than selective addition of 1,000 features. Also, a subgraph
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TABLE 2
Performance Measure � for Classifying a Corpus of 4,943 AMA Dental Claims Forms into 208 Model Categories

for Various Graph Lattice Classifier Test Conditions

In all cases, the graph lattice was built using a single exemplar per category. CMD comp. refers to feature vector comparison using the CMD
distance. cos comp. refers to feature vector comparison using the cosine distance. wt. voting refers to the use of subgraph features by weighted
voting. Extv. G.L. level refers to the level, or size of subgraph, grown by exhaustively accepting all Candidate subgraph feature nodes observed in
the model set. Selective Growth Iterations refers to the number of Candidate subgraph feature nodes promoted under the selective growth algorithm.



grown exhaustively to only subgraph size 2 does not
achieve the accuracy after adding 1,000 subgraph features
selectively (Test Number 12, total 1,111 subgraph features)
that is achieved by exhaustive growth to subgraph size 3
(Test Number 13, 990 subgraph features). In other words,
the feature selective algorithm does not necessarily produce

an optimal set of features, based on single exemplar models,
for classification of the test data. Note that under the single-
exemplar training paradigm, none of the test data are used
in building the graph lattice. Degradation of performance
with the addition of subgraph features can occur because, in
this real-world dataset, the model samples are not fully

SAUND: A GRAPH LATTICE APPROACH TO MAINTAINING AND LEARNING DENSE COLLECTIONS OF SUBGRAPHS AS IMAGE FEATURES 2337

Fig. 15. A sampling of distinguishing subgraph features promoted to Accepted status by the selective learning algorithm, mapped onto model data
graphs. (a) and (b) differ qualitatively only in the top-most junction (T versus Crossing). (c) (size 4) is a parent of (e) (size 5). Note that these serve to
differentiate model FDent190 from models FDent194 and FDent0606, seen in Fig. 14.



faithful representations of the test data images assigned to
them by ground truth. After high scoring subgraph nodes
under (7) have been added, many additional iterations of
the algorithm can focus subgraphs onto small and spurious
properties of very similar model exemplars that then bring
excessive votes for incorrect model images in the test data.
To develop reliable estimates for the optimal number of
subgraphs will require a larger undertaking involving many
large corpora, which is beyond the scope of this paper.

Fig. 15 presents some subgraph features that were
generated as Candidates and subsequently accepted as
useful discriminating features by the selective growth
algorithm. These were among the first 100 subgraphs
accepted after exhaustive growth to level 3 (Test 18
in Table 2).

6 CONCLUSION

This paper has demonstrated how to build and use large
vocabularies of subgraphs as image features maintained in
a graph lattice data structure. The graph lattice supports
exact attributed subgraph matching and thus sidesteps
traditional expensive error-tolerant approaches to graph
matching in computer vision. The idea has been applied to
the classification of forms documents containing rectilinear
line art, where a matching algorithm, called the sweep-
upward algorithm, efficiently computes the presence of
informative subgraph features representing characteristic
topological and dimensional structure of local regions of
model exemplars and test images. Features can be used
either by feature vector comparison or by weighted voting.
The feature vocabulary is grown by exhaustive selection of
observed subgraphs up to some small size, followed by
selective growth based on scoring of subgraph features for
their discriminative power. The goal of successful single-
exemplar training has been demonstrated on two datasets,
the benchmark NIST tax forms dataset and a more difficult
corpus of production run dental claims forms.

Three central ideas underlie this work. First, graphs are
natural data structures for describing spatial configurations
of localized keypoints. Moreover, graphs of different sizes
are related hierarchically, not only in trees, but in lattices,
which are distinguished from trees by having many-to-
many parent-child relationships. A graph lattice data
structure comprised of graph lattice nodes (each of which
is a subgraph) and struts is an efficient means to build
complex structure from simpler constituents. Through
struts, successively larger subgraphs are both represented,
and matched to image data at the incremental cost of only a
single data graph node per subgraph. Thus, a very
favorable memory/speed tradeoff is obtained.

Second, knowledge in a domain can be effectively carried
by the vocabulary of features used to represent observed
instances. The space of possible subgraphs among rectilinear
lines is astronomically large, but a given image domain, such
as the forms images studied in this paper, produces only a
small and tractable subset of these. Under appropriate feature
vector comparison, or better yet, weighted voting methods, a
feature vocabulary whose knowledge of domain line-art
configurations derives from single exemplar observations of

model categories can achieve superior results for practical
real-world classification problems.

Third, under the right construction, exact subgraph

matching can be an effective alternative to error-tolerant

inexact subgraph matching for computer vision applica-

tions. Under the graph lattice data structure, exact subgraph

matching is sufficiently memory and time efficient to afford

large feature vocabularies of highly redundant and over-

lapping subgraphs. At least in the document forms domain,

this redundancy can achieve noise and error tolerance

normally expected for inexact graph matching methods.
To extend the graph lattice approach to other forms of

image data would involve first establishing a vocabulary of
primitive parts (nodes of a data graph) and relations (links).
To exploit exact graph matching, it is advantageous for
primitives to map onto natural categorical elements. For
example, the primitives for road map data might consist of
road terminations (degree 1) plus intersections of degree 2,
3, and so on, without regard to compass orientation. To take
another example, for purposes of indexing images of text
documents [15], a natural graph is formed by the Voronoi
neighborhoods of word centroid locations. Additional
attributes could further refine the primitive vocabulary,
such as number of characters in a word node.

A interesting topic for further investigation is encoding of
data graphs’ continuous-valued attributes to support con-
struction of a graph lattice. Section 4.2 shows how dimen-
sional geometry can be used to filter votes for subgraph
correspondences, but this takes place after subgraph
matching in the lattice. A quantization step on continuous-
valued attributes—for example, angles, orientations, and
spatial distances between primitives—would entail thresh-
olding to achieve categorical labels. Quantization introduces
the potential for categorical errors near threshold bound-
aries, so methods are called for to introduce error tolerance
without exploding computational cost.
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