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Abstract— This paper develops an approach to the capture
and measurement of the information contained in opponents’
bet actions in seven card stud poker. We develop a causal model
linking downcards with hand strength, thence to bet actions.
The model can be inverted to infer probability distributions
over possible downcards from bet actions, given knowledge of
opponents’ bet policies. For experimental purposes, we propose
a simple yet plausible “default” bet policy including deceptive
plays. In simulated games, this apparatus is used to compare
the Kullback-Leibler information measure between inference
of players’ hand strength based on dealt cardsand players’
bet actions, versus inference of hand strength based on dealt
cards only. We experimentally associate the K-L divergences
with the win-lose rates for simulated players who either do or
do not exploit knowledge of opponents’ bet actions. Opponent
inference carries up to a 36% information advantage over a
cards-only player playing the same betting policy, and is worth
on the order of .15 bets/hand.
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model

I. I NTRODUCTION

Simply by virtue of compounding complexity, natural and
simulated mechanistic worlds present many unconquered
challenges for modeling and reasoning by artificially intelli-
gent systems. The challenges become vastly more difficult
with the introduction of other intentional agents. If you
think it’s a challenge to keep weeds and bugs out of your
garden, try fending off gophers, squirrels, and raccoons. A
major goal for Artificial Intelligence in games is to develop
ways to exploit the information conveyed by the behavior of
intentional opponents. Opponents’ actions are typically based
on knowledge, beliefs, goals, and plans the subject player is
not privy to. But with sufficient wisdom, these actions can
be “read” to gain information about the opponents’ hidden
states.

The game of poker deals a prototypical example. The
objective state of the game consists of possession of cards,
some of which are held privately, and some of which are
known to other players. Play decisions (bet/fold actions) are
made on the basis of perceived relative hand strength; knowl-
edge about opponents’ hands beyond that objectively visible
through displayed cards is of immense value. The structure of
betting in poker is designed such that player actions convey
information about their undisclosed cards. Stronger hands
are incented to bet more heavily, but to do so broadcasts this
information, so that opponents may exploit the telegraphed
knowledge to better decide on their own plays. Hence the

most famous aspect of poker is the use of deception in the
form of bluffing and slowplaying to mislead opponents about
one’s actual hand strength. Bluff and slowplay bet actions
run counter to actual hand value, however. This leads to
perplexing tradeoffs, efforts to outguess opponents, and all
manner of psychology.

Poker has therefore been recognized as a model for broader
classes of competitive situations involving uncertain belief
about objective states, intentional opponents whose plans,
goals, and belief states can only be inferred from partial
and uncertain evidence, and promotion ofinformation to the
status of an asset to be managed along with objective ones.
Examples include warfare [5], [6], and business [10].

This paper attempts to take one step toward the develop-
ment of a theoretically sound and computationally practical
framework for analyzing and exploiting information con-
veyed by intentional opponents in seven card stud poker. The
form of poker enjoying by far the greatest public visibility
and AI game interest is Texas Hold’em. We believe our
formulation and results to be broadly applicable, but we focus
on seven card stud because this game presents a particularly
rich texture of possible outcomes and knowledge disclo-
sure as players’ individual hands evolve through successive
rounds of dealing (known as “streets”), each accompanied
by rounds of betting.

Our initial objective is simply to measure the information
conveyed by bet actions, in comparison to the information
offered by the visible cards alone. To do so requires the
development of a great deal of apparatus modeling the
relationship between dealt cards and sensible betting actions,
and this necessarily involves modeling of rational players’
decision-making processes to some rudimentary degree. The
framework will accept more sophisticated opponent models
as they are developed.

The paper proceeds as follows. Through the imaginary
game of “face-up poker”, Section II reviews the logic of
correct betting in poker, and it develops a forward causal
model relating held cards to bet actions. The model extends
directly to true poker in which some cards are hidden.
Section III describes how the model can be inverted to infer
probability distributions over opponents’ possible downcards,
given opponent models of those players’ betting policies.
Section IV introduces a simple form of such betting policies,
and calls out two useful instances, the “honest player” who
bets only by value, and a simple default deceptive player who



executes some degree of slowplaying and bluffing. Section
V introduces a measure of information gained by reading
opponents’ bet actions in comparison with only observing
dealt cards. Section VI presents experimental results of em-
pirical measurements of this information gain for a corpus of
simulated games. This section also ties this information gain
with net win/lose rates for players who do or do not exploit
knowledge of opponents’ bet actions. Section VII concludes
by discussing the results and their possible implications for
live games.

II. T HE LOGIC OFBETTING IN POKER

The logic of betting in poker is well described by Sklansky
[12]. It is best understood by imagining a game of poker
in which all cards are dealt face up, so that every player
sees all of their opponents’ cards as well as their own.
Then, in principle every player can calculate their chances
of having the best hand at showdown. Five-card hands are
ranked by hand type, e.g. “Two pair, Tens and Fours with a
Queen kicker.” Given a partial hand and knowledge of cards
remaining in the deck to be dealt, one may compute a proba-
bility distribution over the final hand achieved at showdown.
Call this a hand type probability distribution, or htpd for
short. This calculation can be performed or approximated
by various means, including sampling simulated deals of
the remaining cards, by enumeration[11], or by combinatoric
analysis extending the reasoning of [1].

Given a set ofhtpds possessed by active players (players
who have not folded their hands) the probability that player
i’s final showdown hand will beat all others is the conjunction
of events that his final hand typeht beats each other player
j, summed over all hand typesk, weighted by the probability
pi(htk) that playeri ends up with hand typehtk:

p(wini) =
∑

k

pi(htk)
∏

j 6=i

k∑

k′=0

pj(htk′) (1)

The final sum term in (1) assumes that hand types are rank
ordered from worst (htk′

0
= 2-3-4-5-7) to best (htk′

max
=

ROYAL-STRAIGHTFLUSH).
Figure 1 shows thehtpds for two stages of the sample

poker game whose game history is given in Figure 8.
Correct betting logic seems straightforward. Any player

whose probability of showing the winning hand is greater
than 1/N should bet or raise, whereN is the number of
active players. Any player whose probability of winning is
greater than their effective odds should not bet or raise, but
they should check or call. Effective oddse is the ratio of
the amount a player will have to contribute to the pot, to the
final pot. Money already in the pot justifies calls by players
who have lower probabilities of winning. The more money
already in the pot due to ante or previous betting rounds,
the worse probability of winning a player may have and it
still be worthwhile to call. Calculation of effective odds can
be tricky, however, because it depends on predicting whether
other players will bet, call, or fold as the game progresses.
In this paper we employ a very simple model of effective

Fig. 1. Hand type probability distributions (htpds) showing the probability
of achieving a final showdown hand, at stages 3B (following betting on 3rd
street) and 5D (following the deal at 5th street), for the sample game of
Figure 8. Only three htpds are shown at each stage because seats 1, 2,
4, and 6 folded at stage 3B. Possible hand types are ordered left to right
from worst to best. Major hand categories listed are HC (HighCard); PH
(Pair-Highcard); TP (Two-Pair); T (Trips); S (Straight); FL (Flush); FH
(FullHouse), Q (Quads). The numbers shown are the probabilities at these
stages that each hand will win, and the entropiesH at each stage.

odds which assumes that in addition to the current pot size,
all currently active players contribute to the pot one bet per
street, through successive streets to showdown.

Thus a model for the causal structure of betting in face-up
poker is shown in Figure 2. A player’s bet action depends
on the effective odds, number of active players, and on their
probability of winning at showdown. Probability of winning
depends on their and their opponents’htpds. Htpds depend
on cards held and cards available to be dealt.

This causal chain may be extended to true poker in which
some cards are held privately. In seven card stud, the first
two and the seventh street cards are dealt face-down. Figure
3 shows the extended model from the point of view of
player i who knows his own downcards but not those of
his opponents. Uncertainty about opponents’ downcards can
be represented in terms of a probability distribution over
all possible combinations of downcards that the opponent
may possess. For seven card stud this may be represented



Fig. 2. Rational betting model for playeri in face-up poker.

Fig. 3. Causal betting model for playeri who knows his own downcards
but represents opponents’ downcards as the probability distributionspdd.

in a vector of length 52 x 51, indexed by the variable,l.
Call this apossible-downcard-distribution, or pdd for short.
The notation,ipddj refers to the distribution of playerj’s
possible downcards from the point of view of what is known
or believed by agenti, who may be a player or some other
observer.

Some entries in thepdd vector may be zeroed out imme-
diately, namely those downcard pairs that include any card
that has been dealt face up to any player. Additionally, every
player knows their own two downcards (or three at 7th street)
which rule out their inclusion in any opponent’spdd. The
goal of reading opponents’ cards through their bet actions
amounts to differentially weighing the remainingipdd entries
so as to reflect each opponent’s apparent hand strength.

Given player j’s possible downcard distributionpddj ,
htpdj is computed by integrating thehtpds over possible
downcard pairsl, weighted by each pair’s probabilitypddj,l:

htpdj =
∑

l

p(pddj,l)hptd(pddj,l, upcardsj) (2)

Obviously this operation can be computationally ex-
pensive so in practice it is important to have effi-
cient implementation of the downcard-to-hptd calculation,
htpd(pddj,l, upcardsj).

A second factor enters into the extension of Figure 2 to true
poker. This is the addition of players’ bet/call/fold policies.
A basic strategy is to bet/call/fold based on estimates of
probability of winning at showdown and effective odds, as
described above. This is known as betting for value. But
bet actions may be influenced by another reason, namely to
induce other players to miscalculate one’s own hand strength.
Therefore, a player’s bet strategy may incorporate deceptive
plays which contradict the player’s strictly value-based ra-
tionale for checking/betting or folding/calling/raising. Sklan-

sky’s Fundamental Theorem of Poker states that one is
advantaged to have one’s opponents bet differently from the
way they would bet if they knew one’s downcards.

Optimal betting behavior including deceptive betting re-
quires knowledge of how one’s opponents will respond to
the various bet actions one may take. These responses might
be dependent on the opponents’ beliefs about oneself. Even
if opponents’ beliefs and strategies were known precisely,
optimal betting would then require forward chaining through
many combinations of possible plays and responses. The
conduct of this reasoning lies beyond the scope of this paper
but is the topic of much of the poker AI literature [8], [2],
[7]. Here we focus on trying to puzzle out opponents’pdds
based on relatively simple models of their betting policies.

Summary of Notation: as subscripts, the variablesi andj
index players in a game; as superscript prefixes they index
agents who possess knowledge or belief, including players
and other observers. The variablek indexes hand types.
The variablel indexes possible downcard pairs (or triples
at seventh street).

III. I NVERTING THE CHAIN TO INFER DOWNCARDS

A key problem faced by a poker player is to make effective
use of the information conveyed by opponents’ betting be-
havior (check/bet and fold/call/raise actions). This amounts
to inverting the forward model of opponents’ betting in order
to adjust beliefs over the opponent’s possible downcards,
represented in thepdd. In doing so, we must account for the
possibility that opponent bet policies may include deceptive
bluffs and slowplays.

Suppose that we know the opponent intimately, such that
for any pair of downcards, plus observed upcards (both
showing and folded) and remaining active players (we refer
to this state information as thetable, t), we know the
probability that in this situation they will execute a particular
bet action bj : bj ∈ {check, bet} if bet-toj = 0; bj ∈
{fold, call, raise} if bet-toj > 0. In other words, if they
hold downcardsdcl and the bet to them is zero, we know
the probability that they will check versus bet, or, if an earlier
player has already opened betting, we know the probability
that they will fold vs. call vs. raise. Let us express this
knowledge as

pt(bj |dcl), (3)

the probability that opponentj will perform bet actionbj

given downcardsdcl, under the table circumstancest. We
treat both opponent bet actions and belief about unobserved
opponent downcards as random variables, while we treat
knowledge of their conditional probability relation as being a
known function which is contingent on the state of the table.
This representation reflects the fact that opponent players
may act nondeterministically, as is in fact recommended by
game theory [4] as well as poker textbooks [12], [13].

When the opponent executes a bet actionbj , we may in-
voke Bayes’ rule to perform inference about their downcards:

pt(dcl|bj) =
pt(bj |dcl)p(dcl)∑
l pt(bj |dcl)p(dcl)

(4)



The prior p(dcl) is the belief held that the opponent has
downcardsdcl before we observed the bet action. This prior
serves the role of carrying information forward from one
street to the next. This calculation effectively performs a
re-weighting of the possible-downcard-distribution by the
likelihood of the bet action, followed by normalization.

Through implicit means, this mechanism achieves fairly
subtle and complex reasoning. Opponents’ actions of plac-
ing a bet (as opposed to checking or calling) tend to
reweigh more heavily the possible downcard pairs that would
offer that opponent a greater chance of winning given
their upcards. Moreover, raises and re-raises weigh stronger
downcards more heavily still, through an additional mecha-
nism. Because the model has every player re-estimating the
strength of every other players’ hand after every action, when
Player A bets, every other player will necessarily increase
their belief that Player A has strong cards, which in turn
decreases their beliefs in their own chances of winning. This
narrows the pool of possible downcards that any player must
hold to meet Player A’s strength. So if Player B then goes
on to raise or re-raise anyway, then for all of the players
trying to estimate what Player B must be holding, (modulo
bluffing) only the much stronger possible downcards for B
will gain significant probability mass through the application
of equation 4.

In a simpler game model and different network architec-
ture, a Bayesian view of uncertainty and opponent modeling
in poker was taken by Korb et. al. [9]. Following the tradition
of Bayesian networks where conditional probabilities are
straightforwardly represented by transition matrices, their
work was designed for the probabilities to be acquired and
modified by learning; a consequence however was a struggle
with the curse of dimensionality due to the combinatoric
complexity of the game.

For heads-up Hold’em games, Southey et. al. used
Bayesian inference to select opponent models from a plau-
sible prior distribution of models after relatively few ob-
servations [14]. Opponent hand strength was not modeled
directly, but, for a simplified version of Hold’em it could
be inferred from opponents’ bet behavior after sufficient
training. Because of the size of full heads-up Hold’em
poker, extension to the full game required simplification of
the model. Nonetheless, intelligent responses to differential
opponent play of their partially hidden hands could be
demonstrated.

IV. SIMPLE MODEL FORRATIONAL BETTING BEHAVIOR

The opponent knowledge function (3) may be quite com-
plex and difficult to discern. We propose to model it by
appealing to the forward causal model for betting expressed
in Figure 3. While the table situational factort can be quite
complex, significant elements will always be found in the
two key parameters, probability of winning and effective
odds. Generally, any halfway decent player will fold most
of their losing hands (i.e. hands whose chances of winning
are below the effective odds) (while perhaps bluffing with
a few), raise their winning hands (i.e. hands whose chances

of winning are greater than1/N )(while perhaps slowplaying
some of these) and call their intermediate hands. Under this
reasoning, the opponent model (3) may be factored into two
simpler components:

pt(bj |dcl) ≈ pe,N (bj |winj)p(winj |dcl), (5)

This factored opponent model employs the probability of
opponentj winning at showdown, given the downcards they
hold, as a random variablewinj that isolates their betting
policy from their estimate of the overall strength of their
hand. The complex situation embodied in the term, table,t in
(3) decomposes now into two simpler terms, one containing
effective odds and number of active players, and the other
relating to the player’s chances of winning at showdown
according to the cards remaining to be dealt from the deck,
and estimates of other players’ hand strengths.

The termp(win|dcl) was discussed in Section II; this is
the probability of winning under thehtpd computed from
the downcardsdcl, the upcards, and the remaining deck. All
that remains to express the factored opponent model is to
define the opponents’ betting policy as a function of their
probability of completing the winning showdown hand, the
effective oddse, and number of other active playersN . This
form of representation for player betting policy is shown
by example in Figure 4. The different regions of Figure 4a
represent probability of check vs. bet, while the different
regions of Figure 4b represent probability of fold vs. call
vs. raise. Different styles of play may be interpreted as
different shapes of these bet policy graphs. An interpretation
of tight play would be a shift of the fold/call boundary to
the right, corresponding to a requirement for a greater chance
of winning to stay in the hand; aggressive play would shift
the check/bet and call/raise boundaries to the left. “Honest”
players who bet only for value would shrink to zero the bluff
and slowplay probability regions, while very deceptive styles
of play would increase these.

Clearly, this is a vast simplification of the betting strategy
used by advanced players, and it is dumb in the AI sense
that it relies heavily on calculation while it lacks strategy.
Notably, this model fails to maintain a stance throughout a
hand (e.g. a sustained bluff), or to decide how to bet based
on anticipated responses of other players, such as planning
and execution of check-raise maneuvers.

Nonetheless, we assert that the proposed factored betting
policy model approximates a baseline default player model
that is suitable for the purposes of this study, which is to gain
insight into the quantity and value of information gained by
exploiting knowledge of opponents betting behavior. More
sophisticated modeling of betting behavior as representedby
(3) may be substituted cleanly into the framework devised
here, and is left for future work.

As a technical matter, it is useful to apply a simple
transformation in the definition of the policy graphs. Default
betting policy is expressed as a function of three variables,
probability of winning, effective oddse, and number of active
players,N . Instead of defining a separate pair of graphs



Fig. 4. Plausible betting policies for a deceptive poker player.

a prob slowplay check .2
b prob bluff bet .05
c -log prob win offset check/bet .1
d prob slowplay call .2
e prob bluff raise .05
f -log prob win offset call/raise .3
g -log prob win offset call/raise .2
h -log prob win offset fold/call .1

TABLE I

PARAMETERS OF THE DEFAULT BETTING MODEL

USED TO SIMULATE DECEPTIVE PLAYERS.

for every N , we apply the transform,p′ = − logN (p), that
eliminatesN as a degree of freedom in the graphs. For the
experiments described in the following sections, we estab-
lished a default player model with piecewise constant regions
for each bet action, blended at their boundaries by linear
interpolation in thelogN transform space. Parameters for this
betting policy are shown in Table I, and the corresponding bet
policy graphs in Figure 5. These were chosen on an ad hoc
basis over approximately 100 simulated games by adjusting
parameters until the simulated players appeared to be making
sensible checking, betting, calling, folding, and raisingdeci-
sions.1 A sampling of games under these parameters can be
viewed at http://www.saund.org/poker/sample-games.html.

V. I NFORMATION GAINED BY INFERENCE FROMBET

ACTIONS

We are now in a position to experimentally measure the
information gain and value of exploiting opponents’ betting

1All seven card stud poker games discussed in this work used the
following fixed limit betting structure: Ante: .25; Bringin:.25; 3rd & 4th
streets: 1.0; 5th, 6th & 7th street: 2.0; maximum four raises per street. There
is no house rake.

Fig. 5. Bet policies defining the default player model used by simulated
players in determining their bet actions, and used to infer hand strength
from opponents’ bet actions. Note that probability of winning is expressed
in the− log

N
coordinate transform, whereN is number of active players.

behavior in addition to knowledge of dealt cards in seven
card stud. Let us considerN + 2 viewpoints on the dealt
cards. Each of theN players knows all of the cards that
have been dealt face up, plus their own two downcards (three
at seventh street). Thepublic knowledgeplayer is like an
observer on the sidelines; they know only what cards have
been dealt face-up so are no longer in the deck. At the other
extreme, theomniscientobserver knows all of the cards that
have been dealt to every player, whether face-up or face-
down. The omniscient player cannot predict cards yet to be
dealt at random from the remaining deck, but they are in the
best position to predict the outcome of the game, in terms
of eventual showdown hands.

We engineer simulated games in which each simulated
player i maintains the following information resources:
• ihtpd for his own hand, based on his current hand and

cards still possibly remaining the deck, according to that
player’s knowledge.

• ipdds for each of his opponents. Opponents’ possible
downcards are successively pared as cards are dealt
face up throughout the game. Additionally,pdds are
reweighed for opponents’ betting actions according to
equation (4).

• ihtpds for each of the opponents, generated from the
weightedipdds according to equation (2).

• estimated probability of each player winning at show-
down, calculated from theihtpds according to equation
(1).

In the simulation, each player bets randomly according to
the default betting model probabilities described in Section
IV, and each player has a perfect opponent model, used in
re-weighting thepdds, that every other player bets according
to this betting policy.

The experiment is instrumented with the omniscient view
of every player’s downcards, hence their truehtpds. The
experimental subject is the public knowledge observer. The
public knowledge observer maintains estimatedpdds, htpds,
and chances of winning for every player, but it lacks knowl-



edge of any downcards. Each player possesses slightly more
information than the public knowledge observer (namely that
player’s two downcards), but the public knowledge observer
constitutes a universal standpoint that does not depend on
privileged information and is best suited to extending this
analysis to real poker games observed from the sidelines.

We measure the information gained by exploiting obser-
vations of bet actions by comparing the public knowledge
observer’s probability estimate of each player winning,q,
with that of the omniscient viewpoint,p. From omniscient
knowledge, at any stage of the game the entropyH of the
outcome probability distribution is

H = −
∑

i

pi log
2
pi. (6)

One way of interpreting the entropy is this. For any game
outcome, if the known probability of playeri winning is pi,
then the Shannon theoretical optimum amount of information
required to communicate that game’s eventual outcome is
− log

2
(pi). The entropy is the average of this, i.e. the aver-

age information required to communicate outcomes sampled
from the distributionp.

If instead one possesses an imperfect estimated probability
of winning distribution,q, then the average information cost
of transmitting the outcome of games is−

∑
i pi log

2
qi.

The difference between this quantity and the actual entropy
gauges the amount of information lost by the distributionq
as compared to the true distributionp; this is the Kullback-
Leibler divergence,

KL = p log(p/q). (7)

If q represents any agents’ imperfect estimates about the
uncertain outcome of the game, the K-L divergence tells how
far this estimate is from the optimal estimate reflected in the
true entropyH.

VI. EXPERIMENTAL RESULTS

In simulated games, we may compute the K-L divergence
between the omniscient probability for each player winning,
p, and the estimated distributionq under two conditions. The
cards-only condition updates public knowledgepdds only
by pruning possible downcards as they are dealt face up
and hence removed from the deck. This condition gives rise
to public knowledge probability of winning distributionsqc

that ignore bet actions. Thebet-inferencecondition prunes
pdds in this way, but additionally uses players’ bet actions
to reweigh the public knowledgepdds as described in Section
III giving rise to prob-win distributionsqb that are informed
by bet actions and perfect opponent models.

Results for 1827 simulated games are plotted in Figure
6. The horizontal axis represents ten distinct information
stages of a seven card stud game. Stages 3D, 4D, 5D, 6D,
7D measure information immediately following dealing of
cards, while stages 3B, 4B, 5B, 6B, 7B occur following a
round of betting. The thick solid green line (lower solid line)
is the entropy of the probability of winning distributionpi.

Fig. 6. Information gain results.

The thin solid red line is thelog
2

of the number of players,
which corresponds to the average information cost when all
active players are believed equally likely to win. The dashed
lines are information measures for the cards-only and bet-
inference conditions. These are simply the entropy added
to the K-L distance for these conditions. The information
advantage of exploiting players’ bet actions is reflected in
the lower positioning of the cards-plus-bet-inference curve
with respect to the cards-only curve.

Figure 6 averages these measures over the 1827 simulated
games. Game stages are included in the average only when
they include at least two active players. To give a sense
of the diversity of games over which the average is taken,
Figure 7 plots the entropies of a subsample of individual
games. In any individual game the entropy, or uncertainty
about which player will win if they stay through showdown,
tends to decrease. But by the luck of the cards, this can
increase if a player suddenly catches a very good card. On
average, however, the entropy decreases except at stage 6B.
By 6th street, in most games, most players have folded. The
simulated players are smart enough to fold if it appears clear
that they have little chance of winning, that is, if the entropy
for the game is probably low and they are on the losing
end. Therefore most low entropy games are concluded by
Stage 6B and the average entropy over remaining live games
increases.

The numbers below the graph of Figure 6 tabulate the
following quantities: the number of games still going at
that stage so included in the average; average log number
players; average entropy; average K-L distances under the
two conditions; and fractional information gain obtained by
exploiting opponents’ bet actions, as opposed to calculating
prob winning based only on dealt cards. The greatest percent-
age gain is at Stage 6B, immediately following the betting
at sixth street, when the bet-inference public knowledge



Fig. 7. Entropies for a sampling of 80 games played by the default
simulated players. Circles identify two stages in the game whose history
is shown in Figure 8. Thehtpds at these stages are shown in Figure 1.

.

Fig. 8. Game history for a sample game whose entropy is plotted inred
in Figure 7. Notation: “.” denotes lead actor at each street;“B”: Bring-in
bet; “k”: check (no one checked in this particular game); “b”:bet; “f”: fold;
“c”: call; “r”: raise.

observer gains a 36% information advantage over the cards-
only observer. The percent advantage drops at Stages 7D and
7B simply because at this point all the cards have been dealt
and the omniscient observer knows the outcome of the game.
The optimal baseline entropy is zero here so the percentage
gain of the bet-inference condition is smaller even though
the magnitude of its information gain over the cards-only
condition increases. (A nonzero entropy at Stages 7D or 7D
indicate that a tie between two or more players occurred in
a few games.)

An interesting feature of Figure 6 is that the cards-only
condition for predicting game outcome actually performs
worse than chance at seventh street. This is an indication
that if a player remains in the game while their four upcards
show a weaker hand than opponents’, then this player must
have a strong hand hidden. The cards-only estimation of hand
strength has no way of accounting for this, while the bet-
inference condition successfully makes this inference in the
course of thepdd reestimation procedure described in Section
III.

It would be a mistake to read Figure 6 as suggesting that
estimation of opponents’ possible downcards is of little value

simply because the cards-only and cards-plus-bet-inference
curves look similar to the naivelog

2
N curve in comparison

to the true entropy. These curves were generated from
simulated games whose players followed tight-aggressive
deceptive bet policies dictated by Figure 5, and therefore the
active players at each street had undergone a severe, informed
self-selection procedure of folding perceived disadvantaged
hands. Note also that success in poker often hinges on
exploitation of relatively few big-pot hands; flat averages
of information gain such as Figure 6 may not reflect this
differential value of information.

How does this information advantage translate to win/loss
rates? We performed a second experiment in which three
players were constrained to be cards-only players by per-
mitting them to use only their visible card knowledge in
estimating their probability of winning, and hence in deciding
their bet actions. In other words, thepdd re-estimation
procedure exploiting opponents’ bet actions was omitted for
these players. The remaining four players were provided
this information; their opponent models used to infer hand
strength from bet actions accurately reflected that four play-
ers were making use of the bet-inference public knowledge
htpds in calculating their own chances of winning prior to
every bet decision. These four players used the cards-only
public knowledgehtpds as a best available approximation
to the beliefs held by the constrained, cards-only players,
who know but obviously do not share their own downcard
information.

It is well known that poker win/lose outcomes occur with
high variance. Over 8977 simulated games, the resulting
win/lose rates are shown in Figure 9. The four bet-inference
players won on average .14 bets/game, while the three cards-
only players lost on average .19 bets/game. This is clearly
attributable to the cards-only players not folding when they
should have. The bet-inference players bet an average of
1.57/hand and won pots at a average rate of 1.71/hand
(netting .14/hand). The cards only players won significantly
more pots, 2.50/hand, but at the cost of betting an average
of 2.69/hand.

VII. D ISCUSSION ANDCONCLUSION

It is by no means surprising that it is advantageous to
exploit information transmitted by opponents’ bet actionsin
poker. This paper has introduced a framework for doing so in
a way that delineates the roles of exposed cards, calculation
and comparison of possible hand outcomes, rational bet
strategy, styles of play, opponent models, and knowledge
and belief carried by players and observers. Using this
apparatus, we have obtained experimental results quantifying
information gain and its implications for win/lose rate by
simulated deceptive players who possess perfect models of
their opponents’ betting policies.

To extend these results to live poker games would raise
several major challenges.

First, unless studies could be conducted from behind the
House or game host’s omniscient viewpoint, in real games
we would lack information about players’ downcards except



.

Fig. 9. Win/lose rates per hand for seven card stud players using the
default betting model for players who do infer information about opponents’
hand strengths (BI seats 1, 2, 5, 7) versus those who use only visible card
information (CO seats 2, 4, 6). Averages are over 8977 simulated games.

when they stayed in to showdown. This limitation would
prohibit accurate calculation of the omniscient probabilities
of winning through the game. In good seven card stud
games such disclosure happens relatively rarely. Moreover,
the omniscient prob-win distribution requires knowledge of
all dealt cards, not just those of players who reveal their
downcards at showdown. This information is virtually never
available. Conceivably, win/lose probabilities under differ-
ent situations can be estimated from actual outcomes and
extrapolated from whatever downcards do get exposed. It
seems however that the sample size needed to approximate
omniscient knowledge would be prohibitive. Therefore, it
appears likely that Kullback-Leibler information measures
based on omniscient knowledge can be pursued only under
laboratory conditions.

Second, real games do not afford ready access to players’
bet policies. Human players especially are likely to decide
their bets on complex, variable, and contextually contingent
criteria. Experienced poker players enjoy the process of
observing other players and getting a fix on their styles of
play. This translates to a very nice challenge for machine
learning investigations, first to attempt to model and map the
varieties of styles, and second to bring this knowledge to bear
to infer particular opponents’ habitation in the large space
of playing styles, from a small number of observations. For
example, Southey et. al. have experimented with sampling
over prior distributions of possible opponents to enhance
belief in those whose behaviors fit that of observed opponents
[14].

This paper’s experimentally observed benefits of oppo-
nent modeling are in a sense an upper bound because our
simulated players possess perfect models of their opponents’
betting policies. In more realistic scenarios, opponent mod-
els will be imperfect and players’ policies may shift over
time. The degradation in information advantage due to these
factors is subject to further experimental investigation.

Finally, the use of artificial intelligence to offer real-time
advice or automated play would require not only retrospec-
tive analysis of opponents’ likely hand strength, but also
forward reasoning about the expected value of potential bet
actions. This is the subject of much of the work in AI for
poker. One benefit of forward reasoning will be strengthening
of the estimate of effective odds by better estimating the
number of opponents to remain active through future rounds
of betting. The effective odds calculation in the present study
is quite rudimentary, although in the formulation presented
systematic overestimates or underestimates in effective odds
can be mitigated by adjustment of the parameters of the
fold/call betting policy.

Poker is an important member of the class of games
for which effective play lies not simply in out-calculating
one’s opponent with regard to the objective state of the
game. Instead, poker is in a fundamental sense a game
of minds against minds. This paper offers a glimpse of
how we may cast in formal mathematical and algorithmic
terms the processes of trying to figure out what intentional
opponents know, what they believe, what opponents believe
about what oneself believes, ad infinitum. Because of the
myriad complexity and subtleties involved, poker would
appear to offer a model system for investigations of the
most perplexing epistemological questions of computational
intelligence engaging intentional agents.
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