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Abstract— This paper develops an approach to the capture most famous aspect of poker is the use of deception in the
and measurement of the information contained in opponents’ form of bluffing and slowplaying to mislead opponents about
bet actions in seven card stud poker. We develop a causal model one’s actual hand strength. Bluff and slowplay bet actions

linking downcards with hand strength, thence to bet actions. ter t tual hand val h This leads t
The model can be inverted to infer probability distributions run counter to actual hand value, however. IS leads 1o

over possible downcards from bet actions, given knowledge of Perplexing tradeoffs, efforts to outguess opponents, dind a
opponents’ bet policies. For experimental purposes, we propose manner of psychology.

a simple yet plausible “default” bet policy including deceptive Poker has therefore been recognized as a model for broader
plays. In simulated games, this apparatus is used to compare c|35505 of competitive situations involving uncertainiefel

the Kullback-Leibler information measure between inference L . .
of players' hand strength based on dealt cardsand players’ about objective states, intentional opponents whose plans

bet actions, versus inference of hand strength based on dealt goals, and pe“ef states can only be .infe”’ed_ from partial
cards only. We experimentally associate the K-L divergences and uncertain evidence, and promotionirdbrmationto the

with the win-_Iose rates for simulated players who either do or status of an asset to be managed along with objective ones.
do not exploit knowledge of opponents’ bet actions. Opponent Examples include warfare [5], [6], and business [10].

inference carries up to a 36% information advantage over a Thi tt ts to tak tep t d the d |
cards-only player playing the same betting policy, and is worth IS paper anempls 10 take one Siep iowar € aevelop-

on the order of .15 bets/hand. ment of a theoretically sound and computationally prattica
Keywords: poker, information, stud, hand type, opponenframework for analyzing and exploiting information con-
model veyed by intentional opponents in seven card stud poker. The
form of poker enjoying by far the greatest public visibility
. INTRODUCTION and Al game interest is Texas Hold’em. We believe our

Simply by virtue of compounding complexity, natural andformulation and results to be broadly applicable, but weifoc
simulated mechanistic worlds present many unconqueret seven card stud because this game presents a particularly
challenges for modeling and reasoning by artificially iliel rich texture of possible outcomes and knowledge disclo-
gent systems. The challenges become vastly more difficidure as players’ individual hands evolve through successiv
with the introduction of other intentional agents. If yourounds of dealing (known as “streets”), each accompanied
think it's a challenge to keep weeds and bugs out of yolsy rounds of betting.
garden, try fending off gophers, squirrels, and raccoons. A Our initial objective is simply to measure the information
major goal for Artificial Intelligence in games is to developconveyed by bet actions, in comparison to the information
ways to exploit the information conveyed by the behavior obffered by the visible cards alone. To do so requires the
intentional opponents. Opponents’ actions are typicalydnl  development of a great deal of apparatus modeling the
on knowledge, beliefs, goals, and plans the subject playerrelationship between dealt cards and sensible bettingresti
not privy to. But with sufficient wisdom, these actions carand this necessarily involves modeling of rational players
be “read” to gain information about the opponents’ hiddeecision-making processes to some rudimentary degree. The
states. framework will accept more sophisticated opponent models

The game of poker deals a prototypical example. Thas they are developed.
objective state of the game consists of possession of cardsThe paper proceeds as follows. Through the imaginary
some of which are held privately, and some of which argame of “face-up poker”, Section Il reviews the logic of
known to other players. Play decisions (bet/fold actioms) a correct betting in poker, and it develops a forward causal
made on the basis of perceived relative hand strength; knowhodel relating held cards to bet actions. The model extends
edge about opponents’ hands beyond that objectively weisibtlirectly to true poker in which some cards are hidden.
through displayed cards is of immense value. The structure Section 11l describes how the model can be inverted to infer
betting in poker is designed such that player actions convgyobability distributions over opponents’ possible doanls,
information about their undisclosed cards. Stronger handsven opponent models of those players’ betting policies.
are incented to bet more heavily, but to do so broadcasts tf8ection IV introduces a simple form of such betting policies
information, so that opponents may exploit the telegraphezhd calls out two useful instances, the “honest player” who
knowledge to better decide on their own plays. Hence theets only by value, and a simple default deceptive player who



executes some degree of slowplaying and bluffing. Sectic|9
V introduces a measure of information gained by readin : :

opponents’ bet actions in comparison with only observini| | . & ﬂ \
dealt cards. Section VI presents experimental results of er AT G i
pirical measurements of this information gain for a corplus c(4 9
simulated games. This section also ties this informatian ga MR A &
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with net win/lose rates for players who do or do not exploi| |
knowledge of opponents’ bet actions. Section VII conclude e PR L i e
by discussing the results and their possible implicatians f ({oF 75—
live games. » Ve
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II. THELOGIC OFBETTING IN POKER —

The logic of betting in poker is well described by Sklansky
[12]. It is best understood by imagining a game of poke
in which all cards are dealt face up, so that every playe
sees all of their opponents’ cards as well as their owr
Then, in principle every player can calculate their chance
of having the best hand at showdown. Five-card hands a
ranked by hand type, e.g. “Two pair, Tens and Fours with
Queen kicker.” Given a partial hand and knowledge of carc
remaining in the deck to be dealt, one may compute a prob
bility distribution over the final hand achieved at showdown
Call this ahand type probability distributiognor htpd for
short. This calculation can be performed or approximate W_}%—
by various means, including sampling simulated deals (‘VQ‘a) 7367
the remaining cards, by enumeration[11], or by combinatori
analysis extending the reasoning of [1]. -

Given a set ofitpds possessed by active players (player H=.9448
who have not folded their hands) the probability that player
i's final showdown hand will beat all others is the conjunctiorFig. 1. Hand type probability distribution&{pds) showing the probability
of events that his final hand typge beats each other player of achieving a final showdown hand, at stages 3B (followingihg on 3rd
. . P street) and 5D (following the deal at 5th street), for the dangame of
j» summed over all hand typés weighted by the probability Figure 8. Only three htpds are shown at each stage becautse Ise2,
p;(hty) that playeri ends up with hand typét,: 4, and 6 folded at stage 3B. Possible hand types are ordeftet léght

from worst to best. Major hand categories listed are HC (Hgtrd); PH
(Pair-Highcard); TP (Two-Pair); T (Trips); S (Straight)L KFlush); FH

k
p(win;) = Zpi(htk) H Z pj(hty) (1) (FullHouse), Q (Quads). The numbers shown are the prokiabitit these
A i k=0 stages that each hand will win, and the entrofiest each stage.

4 i
=3 FA @

.2400

AC T FH LN S = FH o

.0232

|

HC T PH Y e "S{E‘L FH Q!

» ¢ ¢
*P 24 ¢

AC T PH T TP TS FH (=

The final sum term in (1) assumes that hand types are rank
ordered from worst/{t,, = 2-3-4-5-7) to best/ty .. ) ) " )
ROYAL-STRAIGHTFLUSH). odds which ass_umes that in adqmon to the current pot size,

Figure 1 shows theéitpds for two stages of the sample all currently active playgrs contribute to the pot one bet pe
poker game whose game history is given in Figure 8. street, through successive streets to showdown.

Correct betting logic seems straightforward. Any player Thus a model for the causal structure of betting in face-up
whose probability of showing the winning hand is greatePoker is shown in Figure 2. A player's bet action depends
than 1/N should bet or raise, wherd/ is the number of ©on the effective odds, number of active players, and on their
active players. Any player whose probability of winning isProbability of winning at showdown. Probability of winning
greater than their effective odds should not bet or raise, bdepends on their and their opponentispds. Htpds depend
they should check or call. Effective oddsis the ratio of ©n cards held and cards available to be dealt.
the amount a player will have to contribute to the pot, to the This causal chain may be extended to true poker in which
final pot. Money already in the pot justifies calls by playersome cards are held privately. In seven card stud, the first
who have lower probabilities of winning. The more moneytwo and the seventh street cards are dealt face-down. Figure
already in the pot due to ante or previous betting round8, shows the extended model from the point of view of
the worse probability of winning a player may have and iplayer i who knows his own downcards but not those of
still be worthwhile to call. Calculation of effective oddarc  his opponents. Uncertainty about opponents’ downcards can
be tricky, however, because it depends on predicting whethiee represented in terms of a probability distribution over
other players will bet, call, or fold as the game progresseall possible combinations of downcards that the opponent
In this paper we employ a very simple model of effectiveanay possess. For seven card stud this may be represented



remaining deck N\”" sky’'s Fundamental Theorem of Poker states that one is

I~ M advantaged to have one’s opponents bet differently from the

held cards, — == fied, ping) way they would bet if they knew one’s downcards.
: . \ . Optimal betting behavior including deceptive betting re-
“e"’“f"si—_—\: hipd, @paj& p(win;) @‘w-amw quires knowledge of how one’s opponents will respond to

L] .
L] \ L]
held cardsN —_— htpdN

Fig. 2. Rational betting model for playeérin face-up poker.

e the various bet actions one may take. These responses might
be dependent on the opponents’ beliefs about oneself. Even
if opponents’ beliefs and strategies were known precisely,
optimal betting would then require forward chaining thrbug
many combinations of possible plays and responses. The
conduct of this reasoning lies beyond the scope of this paper
! but is the topic of much of the poker Al literature [8], [2],

1uchs7__:\:fmpa1 “pwin, ) [7]. Here we focus on trying to puzzle out opponenidds

: . \/\/A . ) based on relatively simple models of their betting policies

compere ¥ Summary of Notation: as subscripts, the variahlesd j

index players in a game; as superscript prefixes they index
agents who possess knowledge or belief, including players
and other observers. The variable indexes hand types.
The variablel indexes possible downcard pairs (or triples
at seventh street).
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Fig. 3. Causal betting model for playemho knows his own downcards

but represents opponents’ downcards as the probabilityiliisons pdd.
P PP P 4 P 1. I NVERTING THE CHAIN TO INFERDOWNCARDS

A key problem faced by a poker player is to make effective
in a vector of length 52 x 51, indexed by the variable, use of the information conveyed by opponents’ betting be-
Call this apossible-downcard-distributigror pdd for short. havior (check/bet and fold/call/raise actions). This anteu
The notation,’pdd; refers to the distribution of playej’s  to inverting the forward model of opponents’ betting in arde
possible downcards from the point of view of what is knowrio adjust beliefs over the opponent's possible downcards,
or believed by agent, who may be a player or some otherrepresented in thedd. In doing so, we must account for the
observer. possibility that opponent bet policies may include decepti

Some entries in thedd vector may be zeroed out imme- bluffs and slowplays.
diately, namely those downcard pairs that include any card Suppose that we know the opponent intimately, such that
that has been dealt face up to any player. Additionally,yevefor any pair of downcards, plus observed upcards (both
player knows their own two downcards (or three at 7th streeshowing and folded) and remaining active players (we refer
which rule out their inclusion in any opponentsld. The to this state information as theable t), we know the
goal of reading opponents’ cards through their bet actiorgrobability that in this situation they will execute a pautiar
amounts to differentially weighing the remainifhgid entries bet actionbd; : b; € {check,bet} if bet-to; = 0;b; €
so as to reflect each opponent’s apparent hand strength. {fold, call,raise} if bet-to; > 0. In other words, if they
Given player j's possible downcard distributiopdd;, hold downcardsic; and the bet to them is zero, we know
htpd; is computed by integrating thétpds over possible the probability that they will check versus bet, or, if anliear
downcard pairg, weighted by each pair's probabiliyid;,: ~ player has already opened betting, we know the probability
that they will fold vs. call vs. raise. Let us express this

htpd; = Zp(pddj7l)hptd(pddj7l,upcardsj) (2 knowledge as
1

. _ _ . pe(bjlder), (3)
Obviously this operation can be computationally ex-h bability th i ¢ b .
pensive so in practice it is important to have effiN€ probability that opponent will perform bet actionb;

cient implementation of the downcard-tgptd calculation, given downcardsic;, under _the table cw_cumstancesWe
htpd(pdd, ;, upcards;). treat both opponent bet actions and belief about unobserved

A second factor enters into the extension of Figure 2 to tﬂ%pponent downcards as random variables, while we treat
nowledge of their conditional probability relation asgpia

poker. This is the addition of players’ bet/call/fold padis. ! o )
A basic strategy is to bet/call/fold based on estimates &nown function which is contingent on the state of the table.

probability of winning at showdown and effective odds, ad Nis representation_ r_efl_ects the _fa<_:t that opponent players
described above. This is known as betting for value. BUP'@Y act nondeterministically, as is in fact recommended by
bet actions may be influenced by another reason, namelyqemﬁ theﬁry [4] as well as poker tixtbooks [12], [13].
induce other players to miscalculate one’s own hand strengt When t N opponent executes a bet actignwe may in-
Therefore, a player's bet strategy may incorporate daaeptiVOke Bayes' rule to perform inference about their downcards
plays which contradict the player's strictly value-based r pe(bjlder)p(der)

tionale for checking/betting or folding/calling/raisingklan- peldeilbs) = > pe(bjldey)p(deyr) @




The priorp(de;) is the belief held that the opponent hasof winning are greater thah/N)(while perhaps slowplaying
downcardsdc; before we observed the bet action. This priosome of these) and call their intermediate hands. Under this
serves the role of carrying information forward from oneeasoning, the opponent model (3) may be factored into two
street to the next. This calculation effectively performs @impler components:
re-weighting of the possible-downcard-distribution bye th
likelihood of the bet action, followed by normalization. pi(bjlder) = pe,n (bj|lwing)p(wing|de), (5)

Through implicit means, this mechanism achieves fairly . -
subtle and complex reasoning. Opponents’ actions of pIac-Th'S factored opponent model employs the probability of

ing a bet (as opposed to checking or calling) tend tgPponentj winning at showdown, given the downcards they

reweigh more heavily the possible downcard pairs that woufd!d as @ random variablein; that isolates their betting
offer that opponent a greater chance of winning giveHOI'Cy from their est_lmat_e of the o_vergll strength of_thelr
their upcards. Moreover, raises and re-raises weigh strong'and- The complex situation embodied in the term, tafhite,
downcards more heavily still, through an additional mech 3) de_composes now into two S'mP'er terms, one containing
nism. Because the model has every player re-estimating tRf€Ctive odds and number of active players, and the other
strength of every other players’ hand after every actiorgnvh €ating to the players chances of winning at showdown
Player A bets, every other player will necessarily increasccording to the cards remaining to be dealt from the deck,
their belief that Player A has strong cards, which in turitnd estimates of other players” hand strengths. o
decreases their beliefs in their own chances of winnings Thi 1 "€ termp(win|dc;) was discussed in Section II; this is
narrows the pool of possible downcards that any player mu§te Probability of winning under thé¢pd computed from
hold to meet Player As strength. So if Player B then goel'® downcardsic;, the upcards, and the remaining deck. Al
on to raise or re-raise anyway, then for all of the playerfiat remains to express the factored opponent model is to
trying to estimate what Player B must be holding, (modul@€fine the opponents’ betting policy as a function of their
bluffing) only the much stronger possible downcards for g@robability of completing the winning showdown hand, the
will gain significant probability mass through the applioat ~€ffective oddse, and number of other active playehs This
of equation 4. form of repr_eser_1tat|on for player bettlng_pohcy is shown
In a simpler game model and different network architec?y €xample in Figure 4. The different regions of Figure 4a
ture, a Bayesian view of uncertainty and opponent modelid§Present probability of check vs. bet, while the different
in poker was taken by Korb et. al. [9]. Following the traditio '€9ions of Figure 4b represent probability of fold vs. call
of Bayesian networks where conditional probabilities ar¥S: raise. Different styles of play may be interpreted as
straightforwardly represented by transition matricesirth different shapes of these bet policy graphs. An interpinstat
work was designed for the probabilities to be acquired arff ght play would be a shift of the fold/call boundary to
modified by learning; a consequence however was a strugdfé 1ight, corresponding to a requirement for a greater chan
with the curse of dimensionality due to the combinatori®f Winning to stay in the hand; aggressive play would shift
complexity of the game. the check/bet and call/raise boundaries _to the left. “Htines
For heads-up Holdem games, Southey et. al. usdyavers who bet only_f_orvall_Je Would_ shrink to zero_the bluff
Bayesian inference to select opponent models from a pla@Pd slowplay probability regions, while very deceptivelesty
sible prior distribution of models after relatively few ob-Of Play would increase these. _
servations [14]. Opponent hand strength was not modelegClearly, this is a vast S|mpl|f|cat.|on of the b_ettmg strateg
directly, but, for a simplified version of Hold’em it could USed by advanced players, and it is dumb in the Al sense
be inferred from opponents’ bet behavior after sufficient@t it relies heavily on calculation while it lacks strateg
training. Because of the size of full heads-up Hold’endNotably, this mode] fails to maintain a ;tance throughout a
poker, extension to the full game required simplification off@nd (€.9. & sustained bluff), or to decide how to bet based
the model. Nonetheless, intelligent responses to diffeden On anticipated responses of other players, such as planning

opponent play of their partially hidden hands could b@nd execution of check-raise maneuvers. _
demonstrated. Nonetheless, we assert that the proposed factored betting

policy model approximates a baseline default player model

IV. SIMPLE MODEL FORRATIONAL BETTING BEHAVIOR  that s suitable for the purposes of this study, which is o ga

The opponent knowledge function (3) may be quite cominsight into the quantity and value of information gained by
plex and difficult to discern. We propose to model it byexploiting knowledge of opponents betting behavior. More
appealing to the forward causal model for betting expressetphisticated modeling of betting behavior as represeomyed
in Figure 3. While the table situational factbcan be quite (3) may be substituted cleanly into the framework devised
complex, significant elements will always be found in thénere, and is left for future work.
two key parameters, probability of winning and effective As a technical matter, it is useful to apply a simple
odds. Generally, any halfway decent player will fold mostransformation in the definition of the policy graphs. Déffau
of their losing hands (i.e. hands whose chances of winningetting policy is expressed as a function of three variables
are below the effective odds) (while perhaps bluffing wittprobability of winning, effective odds, and number of active
a few), raise their winning hands (i.e. hands whose chancplyers, N. Instead of defining a separate pair of graphs
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Fig. 4. Plausible betting policies for a deceptive pokeyeta

prob slowplay check 2
prob bluff bet .05

-log prob win offset check/bet 1
prob slowplay call 2

prob bluff raise .05

-log prob win offset call/raise 3

-log prob win offset call/raise 2

-log prob win offset fold/call 1
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TABLE |
PARAMETERS OF THE DEFAULT BETTING MODEL
USED TO SIMULATE DECEPTIVE PLAYERS

for every N, we apply the transforny’ = —log, (p), that
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Fig. 5. Bet policies defining the default player model used ibyutated
players in determining their bet actions, and used to inferdhstrength
from opponents’ bet actions. Note that probability of wimgiis expressed
in the —log; coordinate transform, wher® is number of active players.

behavior in addition to knowledge of dealt cards in seven
card stud. Let us consideV + 2 viewpoints on the dealt
cards. Each of theV players knows all of the cards that
have been dealt face up, plus their own two downcards (three
at seventh street). Thpublic knowledgeplayer is like an
observer on the sidelines; they know only what cards have
been dealt face-up so are no longer in the deck. At the other
extreme, theomniscientobserver knows all of the cards that
have been dealt to every player, whether face-up or face-
down. The omniscient player cannot predict cards yet to be
dealt at random from the remaining deck, but they are in the
best position to predict the outcome of the game, in terms
of eventual showdown hands.

We engineer simulated games in which each simulated
playeri maintains the following information resources:

e ‘htpd for his own hand, based on his current hand and
cards still possibly remaining the deck, according to that

eliminatesN as a degree of freedom in the graphs. For the
experiments described in the following sections, we estab-e
lished a default player model with piecewise constant megio

for each bet action, blended at their boundaries by linear
interpolation in thdog »; transform space. Parameters for this
betting policy are shown in Table I, and the corresponding be
policy graphs in Figure 5. These were chosen on an ad hoce
basis over approximately 100 simulated games by adjusting
parameters until the simulated players appeared to be gnakin e
sensible checking, betting, calling, folding, and raisitegi-
sions! A sampling of games under these parameters can be
viewed at http://www.saund.org/poker/sample-gamed.htm

player's knowledge.

ipdds for each of his opponents. Opponents’ possible
downcards are successively pared as cards are dealt
face up throughout the game. Additionallylds are
reweighed for opponents’ betting actions according to
equation (4).

‘htpds for each of the opponents, generated from the
weightedipdds according to equation (2).

estimated probability of each player winning at show-
down, calculated from th&htpds according to equation

(D).

In the simulation, each player bets randomly according to

V. INFORMATION GAINED BY INFERENCE FROMBET
ACTIONS

the default betting model probabilities described in Sxecti
IV, and each player has a perfect opponent model, used in
re-weighting thepdds, that every other player bets according

We are now in a position to experimentally measure th# this betting policy.

information gain and value of exploiting opponents’ beitin

The experiment is instrumented with the omniscient view
of every player's downcards, hence their tragpds. The

1Al seven card stud poker games discussed in this work used ”@(perimental subject is the public knowledge observer. The

following fixed limit betting structure: Ante: .25; Bringin25; 3rd & 4th

streets: 1.0; 5th, 6th & 7th street: 2.0; maximum four raisespeet. There public knowledge observer maintains estimapeds, htpds,

is no house rake.

and chances of winning for every player, but it lacks knowl-



edge of any downcards. Each player possesses slightly mu Bits

Iag2 num live players

information than the public knowledge observer (namelythe [\ e
player’'s two downcards), but the public knowledge observe e e
constitutes a universal standpoint that does not depend 2 average entropy

privileged information and is best suited to extending thi
analysis to real poker games observed from the sidelines.
We measure the information gained by exploiting obse!
vations of bet actions by comparing the public knowledg
observer’s probability estimate of each player winnigg,
with that of the omniscient viewpoin. From omniscient
knowledge, at any stage of the game the entrépyf the 0 T . T T l T T l \
outcome probability distribution is oW oo s

Game Stage
Num games 1827 1694 1694 1427 1427 1106 1106 818 817 414

H e § p log p . (6) Ave. log num live players 2.8074 16350 1.6350 1.2503 1.2503 1.1395 1.1395 1.0905 1.0906 1.0377
? 2 17 Ave.entropy 26517 1.5491 14607 1.1498 1.0238 09820 0.7459 0.7963 0.0061 0.0121
A

K-Linf. cards-only 0.1458 0.0818 0.1431 0.0977 01840 0.1577 0.3330 02993 1.1019 1.1127
K-Linf. cards-plus bets  0.1458 0.0766 0.1326 0.0806 0.1626 0.1113 0.2679 0.1905 0.9866 0.9038
Fractional advantage, 0.0000 0.0639 0.0735 0.1756 0.1163 0.2945 0.1955 0.3634 0.1047 0.1878

One way of interpreting the entropy is this. For any gam carspiusbets over
outcome, if the known probability of playérwinning is p;, e
then the Shannon theoretical optimum amount of information
required to communicate that game’s eventual outcome is
—log,(p;). The entropy is the average of this, i.e. the aver-
age information required to communicate outcomes sampled
from the distributionp. The thin solid red line is théog, of the number of players,

If instead one possesses an imperfect estimated prolyabilivhich corresponds to the average information cost when all
of winning distribution,q, then the average information costactive players are believed equally likely to win. The dashe
of transmitting the outcome of games is)_, p;log,¢;. lines are information measures for the cards-only and bet-
The difference between this quantity and the actual entropgference conditions. These are simply the entropy added
gauges the amount of information lost by the distribution to the K-L distance for these conditions. The information
as compared to the true distributign this is the Kullback- advantage of exploiting players’ bet actions is reflected in
Leibler divergence, the lower positioning of the cards-plus-bet-inferenceveur

with respect to the cards-only curve.
KL = plog(p/q). (7) Figure 6 averages these measures over the 1827 simulated

If ¢ represents any agents’ imperfect estimates about tB@mes. Game stages are included in the average only when
uncertain outcome of the game, the K-L divergence tells hotfiey include at least two active players. To give a sense
far this estimate is from the optimal estimate reflected @& thof the diversity of games over which the average is taken,

Fig. 6. Information gain results.

true entropyH. Figure 7 plots the entropies of a subsample of individual
games. In any individual game the entropy, or uncertainty
VI. EXPERIMENTAL RESULTS about which player will win if they stay through showdown,

In simulated games, we may compute the K-L divergenc@nds to decrease. But by the luck of the cards, this can
between the omniscient probability for each player winpingncrease if a player suddenly catches a very good card. On
p, and the estimated distributignunder two conditions. The average, however, the entropy decreases except at stage 6B.
cards-only condition updates public knowledgelds only ~BY 6th street, in most games, most players have folded. The
by pruning possible downcards as they are dealt face §jmulated players are smart enough to fold if it appears clea
and hence removed from the deck. This condition gives riggat they have little chance of winning, that is, if the epyro
to public knowledge probability of winning distributiong ~ for the game is probably low and they are on the losing
that ignore bet actions. Theet-inferencecondition prunes €nd. Therefore most low entropy games are concluded by
pdds in this way, but additionally uses players’ bet action$tage 6B and the average entropy over remaining live games
to reweigh the public knowledgelds as described in Section increases.

[l giving rise to prob-win distributions,® that are informed  The numbers below the graph of Figure 6 tabulate the
by bet actions and perfect opponent models. following quantities: the number of games still going at

Results for 1827 simulated games are plotted in Figurthat stage so included in the average; average log number
6. The horizontal axis represents ten distinct informatioplayers; average entropy; average K-L distances under the
stages of a seven card stud game. Stages 3D, 4D, 5D, @@p conditions; and fractional information gain obtained b
7D measure information immediately following dealing ofexploiting opponents’ bet actions, as opposed to calagati
cards, while stages 3B, 4B, 5B, 6B, 7B occur following grob winning based only on dealt cards. The greatest percent
round of betting. The thick solid green line (lower solidd)n age gain is at Stage 6B, immediately following the betting
is the entropy of the probability of winning distributign. at sixth street, when the bet-inference public knowledge



simply because the cards-only and cards-plus-bet-inferen
curves look similar to the naivieg, N curve in comparison
to the true entropy. These curves were generated from
simulated games whose players followed tight-aggressive
deceptive bet policies dictated by Figure 5, and therefoee t
active players at each street had undergone a severe, gdorm
self-selection procedure of folding perceived disadvgeda
hands. Note also that success in poker often hinges on
exploitation of relatively few big-pot hands; flat averages
of information gain such as Figure 6 may not reflect this
differential value of information.

e How does this information advantage translate to win/loss

cameswge  TAtES? We performed a second experiment in which three

players were constrained to be cards-only players by per-

Fia 7. Entropies f ing of 80 aved by the def Imitting them to use only their visible card knowledge in
ig. 7. ntropies for a sampling o games played by the defaul _,. . : s L L
simulated players. Circles identify two stages in the gamesehhistory estimating their probability of winning, and hence in déwgl

is shown in Figure 8. Théxtpds at these stages are shown in Figure 1. their bet actions. In other words, thedd re-estimation
procedure exploiting opponents’ bet actions was omitted fo
these players. The remaining four players were provided

Bet activit: treet L . . .
e 'V';@Sfe: Net won/lost Gards this information; their opponent models used to infer hand

° strength from bet actions accurately reflected that fouy-pla
Seat 1 f -0.25 4D JH 63 . . .
g ) o0 2% i ers were making use of the bet-inference public knowledge
Seat 3 - b .bf -2.50 ap 70 75 ac ag  htpds in calculating their own chances of winning prior to
Seat4 £ -0.25 2H QD 6C every bet decision. These four players used the cards-only
Seat5  .Bc c £ -1.75 41 94 45 8H 30 public knowledgehtpds as a best available approximation
Seat 6 f -0.25 8D 4C 5p to the beliefs held by the constrained, cards-only players,
Seat7 ¢ c r 5.25 TC KH TD 55 TH - \who know but obviously do not share their own downcard

Final Pot: 8.75 . information.

It is well known that poker win/lose outcomes occur with
Fig. 8. Game history for a sample game whose entropy is plotteddn hlgh variance. Over 897_7 S'_mwatEd games, the_ resultlng
in Figure 7. Notation: “” denotes lead actor at each stré®t; Bring-in ~ win/lose rates are shown in Figure 9. The four bet-inference
bet, “k”: check (nO one checked in this particular game), ‘béi, “f fOId, players won on average .14 bets/game, Whlle the three Cards_
“c”: call; “r": raise. .
only players lost on average .19 bets/game. This is clearly
attributable to the cards-only players not folding whenythe
. . . hould have. Th -inferen layer n aver f
observer gains a 36% information advantage over the cardis-ou d have e betinference players bet an average o
only observer. The percent advantage drops at Stages 7D an //hand and won pots at a average rate of 1.71/hand
v ) perce . 9 P 9 netting .14/hand). The cards only players won signifigantl
7B simply because at this point all the cards have been dealt .
e more pots, 2.50/hand, but at the cost of betting an average
and the omniscient observer knows the outcome of the 9ame. 5 co/hand
The optimal baseline entropy is zero here so the percentage ’

gain of the bet-inference condition is smaller even though VIl. DiIScUSSION ANDCONCLUSION

the magnitude of its information gain over the cards-only |t s by no means surprising that it is advantageous to
condition increases. (A nonzero entropy at Stages 7D or 7&ploit information transmitted by opponents’ bet actidms
indicate that a tie between two or more players occurred ioker. This paper has introduced a framework for doing so in
a few games.) a way that delineates the roles of exposed cards, calculatio
An interesting feature of Figure 6 is that the cards-onlynd comparison of possible hand outcomes, rational bet
condition for predicting game outcome actually performstrategy, styles of play, opponent models, and knowledge
worse than chance at seventh street. This is an indicatiand belief carried by players and observers. Using this
that if a player remains in the game while their four upcardspparatus, we have obtained experimental results quiatify
show a weaker hand than opponents’, then this player mugformation gain and its implications for win/lose rate by
have a strong hand hidden. The cards-only estimation of hagfinulated deceptive players who possess perfect models of
strength has no way of accounting for this, while the betheir opponents’ betting policies.
inference condition successfully makes this inferencenen t  To extend these results to live poker games would raise
course of thexdd reestimation procedure described in Sectiogeveral major challenges.
1. First, unless studies could be conducted from behind the
It would be a mistake to read Figure 6 as suggesting thetouse or game host’'s omniscient viewpoint, in real games
estimation of opponents’ possible downcards is of littliga we would lack information about players’ downcards except
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information (CO seats 2, 4, 6). Averages are over 8977 sintligaenes.

when they stayed in to showdown. This limitation would

prohibit accurate calculation of the omniscient probaibsi

Finally, the use of artificial intelligence to offer reairte
advice or automated play would require not only retrospec-
tive analysis of opponents’ likely hand strength, but also
forward reasoning about the expected value of potential bet
actions. This is the subject of much of the work in Al for
poker. One benefit of forward reasoning will be strengthgnin
of the estimate of effective odds by better estimating the
number of opponents to remain active through future rounds
of betting. The effective odds calculation in the presendgt
is quite rudimentary, although in the formulation presdnte
systematic overestimates or underestimates in effectids o
can be mitigated by adjustment of the parameters of the
fold/call betting policy.

Poker is an important member of the class of games

" for which effective play lies not simply in out-calculating

one's opponent with regard to the objective state of the
game. Instead, poker is in a fundamental sense a game
of minds against minds. This paper offers a glimpse of
how we may cast in formal mathematical and algorithmic
terms the processes of trying to figure out what intentional
opponents know, what they believe, what opponents believe
about what oneself believes, ad infinitum. Because of the

of winning through the game. In good seven card stu
games such disclosure happens relatively rarely. Moreov
the omniscient prob-win distribution requires knowledde o.
all dealt cards, not just those of players who reveal their
downcards at showdown. This information is virtually never

available. Conceivably, win/lose probabilities underfetif |4
ent situations can be estimated from actual outcomes and
extrapolated from whatever downcards do get exposed. [fl

seems however that the sample size needed to approximgje

omniscient knowledge would be prohibitive. Therefore, it
appears likely that Kullback-Leibler information measire 4
based on omniscient knowledge can be pursued only un&elr
laboratory conditions. [5]
Second, real games do not afford ready access to players’
bet policies. Human players especially are likely to decidg
their bets on complex, variable, and contextually contiige
criteria. Experienced poker players enjoy the process of

yriad complexity and subtleties involved, poker would
a]pear to offer a model system for investigations of the

ost perplexing epistemological questions of computation
intelligence engaging intentional agents.
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