Minimizing M odes for Smart Selection in
Sketching/Drawing I nterfaces

Eric Saund and Edward Lank

1 Introduction

User interface modes are ubiquitous in both mouse-keybaaddoen-based user
interfaces for creating graphical material through skietgtand drawing. Whether
choosing the straight-line or oval tool in Photoshop or P®ent, or tapping a
toolbar prior to lassoing a word in order to select it in OneNasers know that,
before they can perform the content-relevant action theytyhey need to tell the
computer the intent of what they are about to do by setting den®his chapter
reviews our research exploring whether prior setting of esod always necessary,
and whether the future of user interface designs may promée fluid and direct
ways of creating and then selecting and editing words artdngs on a screen.

The purpose of modes is to allow actions performed with alsiitgut device
to mean more than one thing. Physical paper permits two fuedéal operations,
creation of marks, and erasure. For these, the user emplaybdsic tools, each
physically suited to its purpose: a marking tool (penciln pgypewriter keys and
ribbon) and an erasure tool (eraser, white-out). Compuatersnore powerful than
this. They permit not only creation and deletion, but all merof modification such
as moving, resizing, duplicating, changing colors, chagdine quality, changing
fonts, controlling depth order, etc.

To effect modification of content, computer authoring anttiregl tools provide
two dominant modes: a creation mode, and a selection modeifigltion of con-
tent is performed by first entering selection mode, thencselg graphical content
on the screen, and finally performing operations manipulgtie selected content.

Is it possible to design user interfaces that improve thelitjuiand precision
of the Selection step? Our research indicates that the arcamebe yes. The key
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is to more fully exploit available information about usetians in the context of
canvas content, to infer the user’s intent. If the userskgltap, or stroke gesture
makes sense only in terms of one particular mode, then thgrgamoshould allow
the user to perform that operation without first explicithiting the mode, and then
post-facto interpret the action in terms of the correct mode

Modeling of user
knowledge and goals

ConceptSketch concept map

Recognition of canvas content «— sketch & edit tool

+—— Sloppy Selection

A

Recognition of user gestures Inferred Mode Protocol

Overloaded Loop

Ul interaction techniques Selection

Fig. 1 Increasingly sophisticated methods for inferring usegnhbuild on one another. This chap-
ter offers examples highlighting techniques at severadltev

This may require sophisticated analysis of user’s gesttiievisual and seman-
tic structure of canvas content, and even user desires aid, @ shown in Figure
1. Such a project entails risk, for if the program guessesgithe user interac-
tion can go seriously awry. But when done carefully, the ggle can be extended
to not only inferring mode but other aspects of user intentreate new levels of
intelligent user interfaces.

This chapter focuses on mode minimization in interfacesswiarter selection
techniques. We address three challenges associated Veithice:

How best to incorporate multiple selection techniques insietch interface.

e The drawback of requiring mode switching between contegation and selec-
tion.

e The challenge of selecting and interacting with salientigsoof content.

We address these challenges through the creation of ndeehation techniques
contained within a series of experimental graphical coaéind editing programs
that we have built. The ScanScribe document image editiogrpm eliminates the
mode tool palette in a mouse/keyboard image editor by oadihm mouse functions
for multiple selection methods. The InkScribe draw/eddgyam for pen comput-
ers eliminates prior Draw/Select mode selection througimterred Mode interface
protocol. A technique we call Sloppy Selection illustraitgelligent object selec-
tion by analysis of gesture dynamics coupled with visuahsagtation of canvas
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content. And the ConceptSketch program for creation antingdof Node-Link
diagrams shows how recognition of diagrammatic structupperts intelligent ob-
ject selection by cycling Click/Tap operations. These [®in the gesture/canvas-
content analysis pyramid are discussed in the subsequaittrseof this chapter.

2 The Cost of Modes

To motivate minimizing modes in interfaces, it is useful tamine the cost of
having a large set of modes. The salient research questinather some benefit,
either in efficiency or accuracy, exists for reducing theadehodes in an interface.
To examine this question, we describe our recent work indlseaf mode switching.
We first examine the temporal cost of large mode sets, andetky@ore the effect a
large set of modes has on mode switching errors within skatehfaces.

2.1 The Temporal Cost of Modes

Many researchers have studied variations in interactiohriigues for stylus in-
put systems that seek to fluidly allow both command and inpu6[ 9, 18]. This
research can be broadly separated into research that seekprove the acces-
sibility of software modes versus research that seeksnaltiees to modes. While
our work primarily falls into the latter category, i.e. indcing the need for modes
within interfaces, improving the accessibility of modeiterfaces is an alternative
for improving the fluidity of sketch or graphical applicat®that contain multiple
modes.

One open question is whether or not there exists an “optimalde switching
technique, and if so, what the performance of that mode kimigctechnique might
be. To partially address this question, Li et al. [9] studiiveé different existing
mode switching techniques. These include typical modeciviy techniques that
have been extensively used, i.e. use of the eraser end of amtied stylus, use of
the barrel button on an electronic stylus, a press and holthtque similar to the
Apple Newton, and use of the non-preferred hand. They alam@ed a pressure
based technique based on work by Ramos et al. on pressureta/[dg]. In this list
of mode switching techniques, we note the absence of saftwitgets to control
modes, a result of general recognition of the fact that im@neents are needed over
software-based modes [10]. Based on experimental dataali@ncluded that, of
the five techniques, non-preferred hand performed besthgsen the metrics of
speed (fastest), error rate (second lowest), and userenefe (most preferred).

Given the apparent benefit of non-preferred hand mode swggctve explored in
detail the specific temporal costs associated with norepred hand mode switch-
ing [7, 15, 16]. In this work, we looked at the time taken taiate modes with
the non-preferred hand, and the total time taken to perfosimale drawing task,
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given the need to switch modes. We found that, as the numbaodés increased,
the total time taken to perform the drawing task increased tlaat this increase was
a result of an increase in the time required to initiate madésthe non-preferred

hand. We discovered [16], using an interface with betweendnd eight modes,
that the cost of manipulating modes in an interface could beeated using the

Hick-Hyman Law [4, 5]. This law predicts a linear relatioisibetween response
time and the information entrophi, associated with n different responses, i.e.

RT =a+bH (1)

where the information entropy, as defined by Shannon, is:

H = Z plogs () @)

wheren is the number of alternatives (in our study, the number of @spdndp;
is the probability of theth alternative.

Figure 2, reproduced from [16], depicts the linear relathip between informa-
tion entropyH, and time to select a mode, as described in the previous ragutag
To generate this data, we performed an experiment where asepted subjects
with a simple line bisecting task, and asked the subjectsaw a line of a specific
color, indicated by a mode. We measured the time taken teadetthe mode with
the non-preferred hand, the time between mode activatidrttam pen tip touch-
ing the surface of the display, and the time taken to perfdrendrawing task on
a tablet computer. Analysis of variance shows that theresgrificant main ef-
fect of the number of modes on total timgsg = 12.593 p < .001) for the task.
Analysis of variance for the time to activate modes, i.e.tth® to press the ap-
propriate button with the non-preferred hand, shows a igmit effect of condition
(Fs5 = 22826, p < .001). However, the time interval between mode switch and pen
down and the time to perform the drawing task did not varyificantly with num-
ber of modesKs 5 = 1.460, p = 0.269 andrs 5 = 2.360, p= 0.101 respectively).

This work on the cost of mode switching provides evidence, tlegardless of
the efficiency of any mode switching technique, as you addesdd an interface
the cost, measured as the time, to select any individual mattién the interface
increases. By reducing the number of modes within an interfave increase the
efficiency of the interface.

2.2 Mode Errors; The Mode Problem

In addition to temporal efficiency, the accuracy with whickers can manipulate
an interface is an important consideration. It seems ldgfiz larger numbers of
modes in interfaces increases the likelihood of mode erfidrs web site Usability
First [20] defines as mode error as:
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Fig. 2 By studying interfaces with 2, 4, 6, and 8 modes, we show afimelationship between
information entropy, H, and the time taken to select a mod@eecase where all modes are equally
probable. b. varies the probabilities for different modethie interface.

“Atype of slip where a user performs an action appropriatate situation in an-
other situation, common in software with multiple modesafyples include draw-
ing software, where a user tries to use one drawing tool dsnieéie another (e.g.
brushing with the Fill tool), or text editors with both a corand mode and an insert
mode where a user accidentally types commands and endsarpirigdext.”

Two of the most common mode errors include use of the CAPK4dod Insert
keys on keyboards, both of which alter the effect of keybaapdt.

Systems normally mitigate against mode errors by providome indicator for
modes. However, Sellen et al. [19] studied the use of viedlback and kinesthetic
feedback to indicate modes. Visual feedback was providexdhbyging the shape of
the cursor, and kinesthetic feedback by use of a footpedlhdir first study, they
used a non-locking piano footpedal, and users were forceciotain modes. In this
experiment, they found that kinesthetic feedback was mifeeteve at preventing
mode errors than was visual feedback. They followed thidystuith a second study
that contrasted a locking and non-locking footpedal, anthébfewer errors with
the non-locking footpedal. Based on Sellen’s work, Jef Rask his bookThe
Humane Interface, advocates a mode switching technique he terms “quasifiodes
With quasimodes, as with Sellen et al.’'s nonlocking fooged user holds down a
key to indicate modes.

The non-preferred hand mode switching technique used byt ki.€9] and
by us in our work on the temporal cost of modes [16] is a quadambased on
Raskin’s definition. In Li et al.'s work in two-mode interfas, non-preferred hand
mode switching resulted in an error rate of approximatelyA,.slightly worse than
the using the eraser end of the electronic stylus. One quregtianswered by Li et
al. is whether a relationship exists between the number afemand the frequency
of mode errors. It seems likely that increasing the numbenaodles increases the
frequency of mode errors: Users are forced to choose onedrtarger number of
alternatives, giving rise to a higher probability of seiegtthe incorrect mode from
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among the set of available modes. However, whether theaseri mode errors as
number of modes increases is a logarithmic, linear, or dilmestion of number of
modes provides an understanding of the expected cost, imamc of adding addi-
tional modes to an interface, and the corresponding berssfitéated with reducing
the mode set within an interface. To address this questierexamined mode er-
rors as a function of number of modes in a sketch interfacaimamrk modeling
the cost of mode switching [16]. We observed error rates oiéen 3.3% in the
two-mode condition and 7.5% in the eight mode condition [Féfjure 3 depicts
the mode error rate against number of modes in the interfadbis graph, we see
a linear correlationR? = 0.94) between number of modes and frequency of mode
errors in our experimental task.

Error Rate (%)

D = MNW s N = DO W
i

0 2 4 6 8 10

Number of Modes
Fig. 3 Error rate as a function of number of modes in an interface.

Given our results on the relative efficiency and accuracytafrfaces as a func-
tion of the number of modes within the interface, we claint teducing the number
of modes is a worthwhile goal. In the following sections, wamine user interface
techniques and recognition techniques that we have dex@kopaccomplish this.

3 Overloaded Loop Selection: Ul Design to Infer Selection M ode

Many graphical editing programs support multiple meansébecting image mate-
rial through the use of tool palettes. For example, Photpsfff@rs both a rectangle
selection tool and a lasso tool, among others. Selectiomefad these tools puts
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the interface into a distinct Selection mode. The rectaisgiaster for selecting iso-
lated objects, but the lasso is capable of “threading thdle&and selecting objects
among clutter, and generally of creating oddly shaped 8efteregions.

We propose that the most straightforward means for amplifiie selection op-
tions available to users without requiring attention to @l fmalette is to mix them
together in a single Select Mode, and infer the user’s irfremh the gesture they
actually produce. We invoke this idea in a technique callsdr@aded Loop Se-
lection. The user is free to drag a selection gesture thattalay/form as either a
rectangle or a lasso. Both are displayed simultaneougheléiser proceeds to draw
a nearly-closed loop, the rectangle disappears and the dlag®n is chosen. But if
the user releases the mouse while the rectangle is displtyerectangle selection
region is used. See Figure 4.

& PARC ScanScribe  Document2 x: 323 y: 304 !EIE
File Edit Options ‘Window Help

Freeform Draw | Text | Fit | Zoaom I1.D i | ISansSerii W ”35

Fig. 4 Overloaded loop selection initiated by dragging the mouih the left button held. Both

a selection rectangle and lasso path are active. Closingatiecauses the rectangle to disappear,
leaving lasso selection. If the button is released while¢lcgangle is visible, rectangle selection is
used instead.

Overloaded Loop Selection is employed by the ScanScriberdent image ed-
itor program first introduced at UIST 2003 [17]. ScanScriakes this idea two
steps further. First, in addition to overloading rectarayiel lasso selection, Selec-
tion Mode supports Cycle Click Selection, which extendsdyeability to select by
clicking the mouse on an object. This is described in Se@&idecond, ScanScribe
supports Polygon selection, by which users are able totsglage material by plac-
ing and adjusting the vertices of an enclosing polygon. atyselection is invoked
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as a mode, but conveniently so by double-clicking the mowse a background
region, without the need for a separate toolbar.

Overloaded Loop Selection is an example of Ul design minimgiprior selec-
tion of modes through analysis of the user action alone,owitlmegard to the un-
derlying canvas content. Other examples exist as intetid®iques that analyze
user action to determine effect in sketch interfaces. Haclet al. [6] proposed
using a post-gesture delimiter technique, called a “pi§;tr determining ges-
ture interpretation, and they compared the post-gestuimitkr to using a handle,
a timeout, or a button to alter a gesture’s “mode”. Grossntaal.€3] proposed
“hover widgets”, where the tracking state of a Tablet PC sdu® access modes,
and they compared it to using a software button to switchfimée modes. Finally,
Ramos and Balakrishnan [12] describe a “pressure markhigak, where the dif-
ferent pressure associated with a mark maps to differeatgretations. However,
in each of these cases, the need exists to select from amepgssible alternative
interpretations, either during or after the action. As date Section 2, there is a
cost associated with selecting amongst alternatives. Bymmizing modes within
an interface, we reduce the cost of selecting any mode wiitigiinterface.

While the Ul design of the ScanScribe document image editardadeled after
and builds on PowerPoint, ScanScribe is designed primarilye an editing tool
for mouse/keyboard platforms and does not offer many optfon entering new
material. Freeform entry of sketch strokes is possible oblit by explicitly enter-
ing a separate Freeform Draw mode. The pen/stylus platfomihe other hand,
demands more seamless interplay of drawing/sketching antit select/command
manipulation of canvas content.

4 Thelnferred Mode Protocol for Stylus Drawing and Selection
with a Pen

The prototypical application for pen/stylus computingtfdens is the Electronic
Whiteboard, which generally supports freeform drawing haddwriting, then se-
lection of digital ink for cut, copy, move, resize, color clg, etc. Unconstrained
electronic notetaking applications fall within this defian. One of the first elec-
tronic whiteboard programs to gain significant contemplativas the Tivoli [11]
program for the Xerox Liveboard.

The fundamental problem with pen electronic whiteboardgpams is how to
support drawing, selection, and commands on selected ialatieough a single
pen/stylus channel. The designers of Tivoli experimentéd pen barrel buttons,
tap-tap gestures, and post-lasso pigtail gestures, antbegthings, but eventually
settled on explicit setting of Draw/Select mode throughde gbolbar. Later, the
Microsoft Journal program for the TabletPC settled on psitting of Select mode
through either tapping on a toolbar icon or else stationatyihg of the pen for a
predetermined length of time. All of these methods for moettrgy fail to deliver
seamless fluid user action. Barrel buttons are awkward toTosdbars require redi-
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rection of user focus away from the canvas. And stationamghcequires waiting
for the hover threshold timeout and also leads to inadvedetry of Select mode
when the user may intending to draw but momentarily simplyspag to think with
the pen down. The problem, we believe, is hotv the user is supposed to set Draw
versus Select mode, but that they have to do it at all.

/N = « (F
L JARNNIE| /N (D

1. Draw a triangle. 2. Draw two intersecting 3. Draw a cicle around
squares beside the triangle. the squares.

4. Draw a diagonal line
beside the squares.

a
/\\:\ /\\‘\ ‘ - /\\\
O
=1
1. Draw a triangle. 2. Draw two intersecting 3. Move the squares below
squares beside the triangle. the triangle.
/ /N
W) o/
] =
4. Draw a cicle around 5. Draw a diagonal line
the squares. beside the squares.
b

Fig. 5 Two simple tasks for a pen drawing/editing platform. a. Teskolves only draw a series
of shapes. b. Task Il involves drawing, then selecting andingogsome of the drawn objects (as if
the user changed their mind about where to place them), tiisegquent additional drawing
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4.1 The Mode Problem in Electronic Whiteboard Programs

We illustrate the mode problem through two simple tasks tvitiould be part of
a larger document creation/editing session. The purpogsheske tasks is not to
achieve the final result as efficiently as possible, but rathsimulate the process a
user might go through, including changing their mind in nividam and rearranging
material they have already placed on the canvas. In Tasgu(€i5a) the user draws
atriangle, some overlapping squares, and a diagonal hirfadk Il (Figure 5b), they
draw these same objects, but midway through, they decidestoge the location of
the overlapping squares. To do this, they would need to wsdridwing tool’s edit
capabilities to select the squares and drag them to theidesired position on the
canvas. This is where trouble lies. Under a conventionaleviuased interface de-
sign, the user would enter a selection mode and draw a lassacthe squares to
select them. Then, they would have to exit selection modettam to drawing. If,
in the creative moment, these extra Ul steps are not contpteteectly, the task is
thrown off track.

4.2 Analytical Tool: The Interaction Flow Diagram

In order to gain insight into how and why the requirement farda setting can
become a serious problem for pen-based drawing and ediistgras, we intro-
duce an analytical tool for graphically tracing the stepsmtdraction between user
actions and program interfaces. Theeeraction Flow Diagram is a form of state
diagram, but one that emphasizes the modal state of thegoroamd the operations
available to users within each mode. In a conventional ugerface state machine
diagram, nodes denote internal states of the program asdlanote possible tran-
sitions between them. In the Interaction Flow diagram, sade differentiated into
three primary types: (1) those that depict internal mackia¢e and information
available to the user through the machine’s display (regém); (2) those that in-
dicate intentional user actions (rounded rectangles}h@e that indicate a choice
or decision point for the user (circles). The Interactioovrdiagram is particularly
useful in dissecting user interaction bugs and aspectsasfinterface design that
enable them.

The difference is illustrated in Figure 6, which presents skate machine dia-
gram and Interaction Flow Diagram representing the simkraction afforded by
paper, pencil, and eraser (or equivalently, whiteboardkeraand eraser). There
is no computer program here, the only action object in thégydim is the user’s
writing/drawing activities, which include two functionsreating marks, and eras-
ing them.

The State Machine diagram represents the use of penciereaasl paper as
transition among four states: Pencil Poised, Marking, &r&oised, and Erasing.
The transition arcs reflect the logic of the system, for exiantipe fact that before
one can create a mark, one must first hold the pencil, them ji&tip to the paper.
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PE-SM-1
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Poised

PE-SM-2
Eraser
Poised

Switch to
eraser

Pencil Pencil Erase Eraser
down up down up
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Fig. 6 a. State Machine and b. Interaction Flow Diagram for penuil eraser. Rectangles repre-
sent a quiescent state of the interface. Rounded rectaregiessent user actions. Circles represent
user choices among available actions, given the presentsiite.
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The Interaction Flow diagram portrays the interaction inanmer more closely
resembling the user’s experience. State display nodesgsepted by rectangular
boxes, indicate information visually (or through otherses) available to the user.
In particular, in the quiescent state between actions, see can see the markings
on the page, and they can sense whether the pencil or ergseised above the
page. Circles indicate deliberative choices, such as ltwéher making a mark
or switching to the eraser. The Interaction Flow diagrans tresconfigures selected
arcs exiting from nodes in the formal State Machine diag@mmake explicit certain
decisions the user can make at the level of significant fanatioperations of the
tool. Finally, actual user actions are shown as roundedd@fen Interaction Flow
diagrams package up tedious details of the State Machigeadra For example, the
state transition subgraph of touching, dragging, andlifthe pencil are wrapped
into the functional action (rounded box) labeled “draw”.

The Interaction Flow diagram in Figure 6b reflects the simipfiof the interac-
tion model for pencil and paper. The current draw/erase nwdévays indicated
by visual and/or tactile display. The choice to switch modesways available. To
execute a mode switch the user carries out the physical acbtings the desired
tool end into position for use. Once in Draw or Erase modesyis¢éem stays in that
mode by default. The acts of continuously writing or continsly erasing are tight
loops through states in Figure 6b. When writing fluidly themumay effectively
ignore the choice to switch into erase mode. And signifigafik the purpose of
managing their interaction with the pencil, the user hasagmirement to attend to
the information display (i.e. the markings on the surface e pencil tip in view).
Rather, they are free to write or draw “open loop,” paying#atibn to the content of
their writing instead of the user interface features of .t

With the greater functionality of computer programs foratieg and editing
graphical material comes greater complexity of the userfate. Perhaps the most
successful of these is PowerPoint. A simplified User Intéwad-low Diagram for
the PowerPoint-style interface is shown in Figure 7.

The fundamental operations here are creation of new textaghic objects, se-
lection of objects, and modifying selected objects. Theseeflected in three state
display nodes (rectangular boxes), in Figure 7. When ngtisnselected (Node
PPT-IF-2), the interface is in Select mode. From here the las the option of
performing a selection operation (PPT-IF-8) or else ente@reate/Entry mode by
choosing an object type to create by clicking a menu or tadbzan (PPT-IF-5).
Either of these choices results in an internal change of madtate, and also in an
augmentation of the display, such as highlighting of sel@chaterial (PPT-IF-3),
or change from an arrow to crosshair cursor (PPT-IF-1). Gooeething is selected
(PPT-1F-3), the interface enters Command Mode, in whictctet material is high-
lighted. From here the user has a choice to deselect it, madgelect additional
objects, or switch to a create mode.

The default Mode of PowerPoint is Select Mode. PowerPointis users to
select graphical material by either of two means, by tappingn object, or by
dragging a rectangle which results in selection of all osjentirely enclosed.
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PPT-IF-7 -9
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PPT-IF-8

Select object(s) Modify selected

objects

Fig. 7 Simplified Interaction Flow Diagram for the PowerPoint stawed graphics editor.

4.3 Interaction Flow Analysis of Mode-Based Selection and
Drawing

The Interaction Flow Diagram provides insight into exagtlyat can go wrong with
prior selection of mode in an electronic whiteboard prograet us consider in de-
tail Task | and Task Il of Figure 5 in terms of the Interactidov for a conventional
mode-based Electronic Whiteboard program, such as Tivdlflierosoft Journal.
See Figure 8. This protocol bears strong resemblance to thuserbased interac-
tion protocol design of PowerPoint and other structuregblgics editors. The main
difference is that Create/Entry Mode (also known as Draw &/fud a pen/stylus
program) and Command Mode are persistent. When in Draw Mibdel¢ftmost
Display/User Action column of the diagram) the act of makiageated marks with
the stylus is fluid and unconstrained, just as with a phygeal or pencil. From
Draw Mode, the user may switch to Select Mode by an explitgibacsuch as tap-
ping a toolbar item or releasing the stylus barrel buttonSétect Mode the user
may select objects by tapping or lasso.

Although Draw and Select modes are independent nodes imteeattion Pro-
tocol (CS-IF-1 and CS-IF-2), an Electronic Whiteboard pemg may or may not
actually provide a visible indicator of the current modetdblets and electronic
whiteboards whose hardware provides pen hover detectimnative Draw and
Select cursors can do this. In purely touch-based styluggsany visual mode
indicator must be placed peripherally if at all. In eitheseausers are famous for
ignoring mode indications rendered via cursor shape.

The mode problem arises when users perform as if the systemimvene mode
when in fact it is in another. Our sample draw/edit tasksstiate where the inter-
action protocol can lead users to make errors. Task | is nadlalgm. This involves
simply adding strokes one after another, in draw mode, asrsiroFigure 9.
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CS-IF-3
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& command cursor;
highlight selected strokes

CS-IF-6
Deselect
strokes(s

CS-IF-1
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& draw cursor
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& command cursor
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Modify selected
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(tap or encircle)
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Fig. 8 Representative Interaction Flow Diagram for an Electrowbiteboard program for
Pen/Stylus platforms.

draw draw draw
triangle . square . square
AN N M
LN\ LN L
1
draw draw
circle B line segment

Fig. 9 Steps of the interaction flow for Task | under the Interactidow protocol of a conven-
tional Electronic Whiteboard program. Numbers indicatde®of the Interaction Flow Diagram
of Figure 8.

The interaction flow forcorrect performance of Task Il is shown in Figure 10.
Note that in order to move the pair of squares the user mustsiiritch to Select
mode, then draw a lasso around the squares in order to sedent then drag the
selected objects to another position, and finally switctkbhad®raw mode.

The common interaction bug in this protocol is failure totsWwimodes before
executing the next pen gesture or stroke. Figure 11 showisitdy@ction flow that
results from failing to enter Select mode, CS-IF-4. The Umdraves as if they are
proceeding from Node CS-IF-2, performing what is intendelé a selection ges-
ture. But the program interprets this as a drawn stroke, andars it as such. Seeing
a drawn circle instead of a visual indication of strokes &tel@, the user is alerted
to the problem. They must then execute a repair protocol leiat three additional
actions, plus they must devote attention to the display tifyvhat they are back on
track, before proceeding with the intended task.
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Fig. 10 Steps of the interaction flow for correct performance of THsknder the Interaction
Flow protocol of a conventional Electronic Whiteboard prog. Numbers indicate nodes of the
Interaction Flow Diagram of Figure 8.
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In a similar fashion, by failing to return to Draw mode afterforming an edit
operation, users are alerted to the problem and must iptetineir flow of inter-
action in order to recover and re-synchronize their mentadehof the interaction
with the machine state of the program.

4.4 Inferred Mode Protocol: I nferring Draw/Select Mode

To address the Draw/Select Mode problem for pen/stylusfattes, we introduced
a technique called the Inferred Mode protocol [18], usetiélbkScribe pen-based
sketch tool. This protocol allows the user to perform eitaatraw/entry or lasso
selection gesture without a priori specification of modee Tritent of the stroke is
inferred from the stroke’s shape and its relation to exgstianvas content. If the
stroke is not closed, or if it is closed but does not encloseexisting material,
then it cannot be a lasso selection gesture so is interpaste@w ink. If however
it is approximately closed and does enclose markings onaheas (which can be
any combination of digital ink and bitmap image), the gesiarambiguous. In this
case, the interface presents a pop-up menu labeled, “3¢&lacth nearby but out-
of-the-way location. The user may then elect either to t@pntienu item to select
the enclosed material, or else simply ignore it and keepngridr drawing.

The Inferred Mode Protocol also supports Cycle Tap Selest;iibed in Section
6. In doing so, the protocol prohibits the user from drawintsdor short tap strokes,
on top of or very near to existing markings.

The Interaction Flow Diagram for the Inferred Mode Protasahown in Figure
12. Note that there are no user action nodes by which the upécidy switches
to a Draw or Command mode. Instead, the logic of mode switcisiembedded in
the inference of user intent based on the user’s actionsitegb

At quiescence the user can be faced with one of four visu@lyndjuished situ-
ations: nothing is selected (IM-IF-1); nothing is seledbed the pop-up menu item
saying “Select?” is displayed (IM-1F-2); one or more strekee selected (IM-1F-3);
one or more strokes are selected and a command menu is (idbI&-4). From
these four possibilities the flow of control converges onte anified set of choices
that are always available regardless of the selection Mataely, the user can at any
time draw more material (IM-IF-7), they can at any time pari@ selection gesture
(IM-1F-8), and they can at any time reset the selection sté&bunothing selected
by tapping in the background (IM-IF-9). The final options,gerform a gesture
to move or modify selected material (IM-IF-10 and IM-IF-1&)e operative only
when something is actually selected.

The Inferred-Mode protocol introduces a new type of nodeht Ihteraction
Flow notation. This is the Intent Inference node, shown ammdnd (IM-IF-12),
which represents a decision process that the system perfamrthe input gesture
drawn at user action nodes IM-1F-7 or IM-IF-8. Note that IM-T or IM-IF-8 reflect
only user intent, not any overtly distinguishable actiostate. The purpose of this
decision is to determine whether an input pen trajectorydarty a drawn stroke,
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clearly a selection operation, or else ambiguous. The idecis made on the basis
of certain rules which make use of the machine’s prior sfates the stroke’s loca-
tion, shape, and proximity to other strokes on the canvasekxample, a trajectory
creating a closed path is interpreted in the following way:

If the path encloses no other strokes then it is clearly a distvoke.
If the path encloses at least one other stroke AND some diifodees are selected,
then the path is interpreted as a selection gesture thatthdanclosed strokes
to the set of selected strokes.

e If nothing is selected and the path encloses at least one stifudke, then the
intent is ambiguous. The user could be intending to selecetitlosed strokes,
or they could simply want to draw a circle around them.
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Fig. 13 Interaction flow for Task | (a) and Task Il (b) under the InéztiMode Protocol. Numbers
indicate nodes in Figure 12. Note that the user’s actiongdergtical until the point at which they
either ignore or tap the pop-up “Select?” button at step RvBI(3 in the figure).
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Critically, this gesture interpretation is made after thele, and the burden is
lifted from the user to specify the correct Draw or Commandimgrior to per-
forming the motion. Only if the stroke is ambiguous is therys®sented with the
“Select?” mediator, at which time they have the choice opitag the pen to select
the enclosed material, or else ignoring it and proceedirdyaw either additional
digital ink strokes or else an entirely different enclosiyggture to select something
else (IM-IF-6).

Figure 13 details the interaction flow for Sample Tasks | dndhéler the Inferred
Mode interaction protocol. Tasks | and Il are performed taetly through the first
four actions, where the user executes a circular pen toajeenclosing the squares.
At this point the program cannot know whether the user irgetaddraw a circle
or select the squares it encloses. The system displays fhegp&elect?” menu
item. Here the two tasks diverge. Under Task I, the user ggtire menu item and
continues drawing, completing the task with the entry of final diagonal line.
Under Task II, where the user intends to move the squargstdpen the “Select?”
button and the squares become highlighted as selectedabjée user then drags
them to the target location, and, without explicitly switodp modes, proceeds to
complete the task by drawing a circle around the squares, ttieefinal diagonal
line.

The Inferred Mode Protocol for pen/stylus interfaces makigsmal use of struc-
ture analysis of canvas content, limited simply to detemgrwhether a stroke is
approximately closed and if so, whether it encloses exjstirarkings. Further de-
velopment of intelligent user interfaces involves morelssiicated analysis of the
visible canvas in conjunction with the dynamics of the usettoke.

5 Sloppy Selection: Inferring Intended Content of an Ambiguous
Selection

Let us assume that the digital ink and bitmap images on a saameanot arbitrary,
random strokes and images, but are meaningful, structunjedts. Most instances
in which a user intends to cut, copy, move, or otherwise nyodhifiterial, they do
so with respect to this structure. It makes sense to biagirgition of the user’s
actions in terms of the coherent objects and groupings ptesethe canvas. The
most commonplace application of this principle applieshe tharacters, words,
lines, and paragraphs comprising text. While always péimgiexceptions, selec-
tion operations should tend toward selection of these units

In accordance with this principle, we have suggested a userface technique
for lasso selection calle®oppy Selection [8]. Sloppy Selection observes that users
lasso gestures may at times only approximately encircleliject(s) they intend to
select. To the extent that the user perceives objects orathas as being organized
into salient chunks, a quick, approximate selection gestuay be “good enough”.
Conversely, we assume that if users intend to select anpitran-salient regions of
the canvas, they will do so slowly and deliberately. The BloPelection technique

)
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thus analyzes the dynamics of the user’s lasso gesture ¢otaiscwhether and in
what portions of the gesture the user is performing a rougickgand-dirty stroke,
versus a careful, deliberate partitioning of selectedusexcluded material.

In order to implement Sloppy Selection, we must employ a rhoflaser ges-
tures under casual and deliberate intent. We assume thetlcadoppy” strokes are
performed balistically, with a single motor planning evawblving minimal mid-
course correction. This type of motion is known to follow théimum jerk prin-
ciple, from the biological motor control literature. Figut4a illustrates the speed
profile of a fast, single-motion lasso gesture. Slowing esat locations of highest
curvature according to a 2/3 power law. Conversely, cardfliberate strokes occur
at a much slower speed more closely obeying a “tunnel law” afion [1], as seen
in Figure 14b.

We exploit the difference between fast casual gestureslang deliberate ges-
tures by inverting the local speed profile along a gesturafar what we intpret as
an effective selection tolerance width. Where a gestupgE®d is less than would
be predicted by a minimum jerk motion, we assume that the isséeliberately
slowing down to more carefully adjust the gesture path, aedefore the effective
tolerance narrows.

To combine the tolerance width with image structure analyse first construct
candidate salient objects by performing visual segmentaind grouping on the
existing canvas digital ink. Then, at the conclusion of a&ptal selection stroke we
analyze the user’s inferred selection tolerances. Whesssols selection tolerance
permits, we divide included from excluded material acoogdio the segmented
units. But where the selection tolerance narrows, we spitd® or stokes literally
along the lasso path, as shown in Figure 15.

6 Cycle Tap Selection: Exploiting Structure Recognition

The simplest and most direct method of selecting materitd &imouse or pen is,
respectively, mouse click (typically using the left mousdtbn) or pen tap. The
problem is that this action is ambiguous with respect to teammngful structure of
canvas objects, because any given section of digital inkagmfient of bitmap im-
age may belong to multiple coherent objects. The dominaweF@oint Ul design
for graphics interfaces addresses this ambiguity throhghuse of groups. Prim-
itive objects can be grouped hierarchically into groupg tdwdlectively form tree
structures. See Figure 16b. Clicking on any primitive obgagomatically causes
selection of the collection of primitive objects descemdiom the root node of any
grouping tree the clicked object belongs to.

In PowerPoint-type Uls, groups are both a blessing and &c0nsce the user has
grouped an object, in order to select that object and motdifipcation or properties,
they must first un-group it. At this point, the group struetus lost and to get it
back the user has to reconstruct it manually, which can beaprite tedious. Thus,
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Fig. 14 a. Speed profile for a “sloppy” selection gesture. b. Spesefil@ifor a “careful” selection
gesture. Note the relatively slower speed for the straightisn where the gesture is threading
between two lines of text.

ambiguity and actionable membership in multiple groupsuas$ sire not actually
supported.

We extend the notion of grouping primitive elements into megful larger
structures in two stages, each of which carries design felligent Uls a step fur-
ther. These steps are first, lattice groups, and secondnatitogroup formation
through structure recognition.

To permit primitive strokes and bitmap objects to belong twerthan one group
simultaneously, we reformulate group structure from adrigrical tree to a lattice.
In a lattice, a child node may have more than one parent, arsthtlay participate in
more than one group. This idea is taken to an extreme in theS8cde document
image editor and the InkScribe digital ink sketch creatind aditing tool. In these
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Fig. 15 Steps in the sloppy selection gesture interpretation igokn a., b. Detection of word
objects. c., d, Inference of gesture carefulness vs. ghegpi e., f. Decision whether to select
based on word groups or precise gesture path.

programs, the lattice is flat, consisting of only primitivesd a layer representing
groups of primitives. Figure 16c illustrates that, for exdena lattice representation
is sensible for maintaining the meaningful groupings oflautar arrangement of
cells. Any given cell simultaneously belongs to a row, a owoiy and the entire
table.

The user interface design problem posed by lattice grogagidow to give the
user control over selection in terms of the multiple avddadptions. A straight-
forward approach is called Cycle Click/Tap Select. Click{a mouse) or tapping
(a pen) once on a stroke or bitmap object causes the prinubject itself to be
selected. Tapping again selects one of the groups thattdigéangs to to become
selected. Tapping repeatedly then cycles through theadlailgroups. Our expe-
rience with ScanScribe and InkScribe suggest that the Gylitd/Tap Selection
technique is effective when the groups are all sensible iamited to about five in
number. Each tap requires visual inspection of the sele¢tmlicated for example
by a highlight halo).

In basic ScanScribe and InkScribe, groups are formed ieeithtwo ways. Any
combination of primitives can be selected manually by d@tigkwith the shift key
(in ScanScribe for the mouse platform) or tapping indivichigects (in InkScribe
for the pen/stylus platform). Then, an explicit menu itermpiés explicit creation of
a group. Or, groups may be formed automatically when the msewually selects a
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collection of primitives, and then performs any operatioohsas moving, copying,
changing color, etc.

This approach to multiple, overlapping group structurerferthe basis for a
second, more advanced form of meaningful group-basedtmalecof by direct
Click/Tap. That is for groups to be formed automaticallyotigh automatic struc-
ture recognition.

Automatic structure recognition is exemplified in a programhave developed
for creating and editing node-link diagrams, called Consketch. Node-link dia-
grams are the basis for a popular graphical notation, cadleédusly Concept Maps,
or Mind Maps, for brainstorming and organizing informattbnough labeled nodes
representing cognitive concepts, and (optionally labelietts depicting relations
among concepts. The popularity of concept maps is evidebges multitude of
free and commercial programs available for creating aniihgdihese diagrams. At
this writing, however, none of the available programs aff@truly fluid user inter-
face permitting users to simply draw a concept map in freeffashion and then
select nodes, links, and labels as meaningful objects toarege, form and delete
new nodes and links. and label or annotate. By design, Ct8kefzh is an ex-
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tension of a basic Electronic Whiteboard that knows aboderk diagrams and
automatically recognizes the constructs of this notatistoratically as the user
creates it.

The key to a powerful concept mapping program is automatiogeition algo-
rithms that can identify and organize the elements of a qunoap, including text
representing node labels, graphical node indicatorssliakrows, link labels, and
arbitrary annotative text and graphics. The recogniticaitsgies we have developed
lie beyond the scope of this article. Here, of interest agaier interface techniques
for accessing the meaningful diagrammatic objects ongelthee been recognized.

The Cycle Click/Tap select technique serves this purpasFRjures 17 and 18.
In prototypical use, we presume that the user’s overall igaal evolve a rough and
malliable sketch into a formalized diagram. The meaninghjects here are: (1)
the graphical object representing the concept nodes; &etktual labels of these
nodes; (3) entire nodes consisting of both node graphicshamdtextual labels; (4)
the curvilinear lines linking concepts; (5) arrows or otkenminating graphics of
link graphics; (6) textual labels associated with grapHin&s; (7) entire links con-
sisting of the link lines, their terminator graphics, andititabels; (8) ancillary text;
(9) ancillary graphics. To support Cycle Click/Tap seleegognition algorithms
need to build structured representations of the canvasafiatt these groupings of
primitive digital ink and text objects. Any given primitiveay belong to more than
one group. Figure 18 illustrates that in the ConceptSketognam, the user may
select different levels of structure by repeated tappiagping once on the side of
a rectangle forming the enclosing graphic of a node causg¢sitite to be selected,
including its text label; tapping again at the same placdesyto selection of just
the rectangle; tapping again cycles to selection of jussitie of the rectangle.

For creation and editing of Concept Maps using a pen/styli@anceptSketch,
the Cycle Tap Select protocol is embedded within the Infeiviode protocol of
Figure 12 in particular, within the Tap selection Node IM8F

This principle of course applies to all types of graphicalisture, across all do-
mains for which effective recognition algorithms can beiged, including circuit
diagrams, mathematical notation, physical simulationgjireeering and architec-
tural drawings, chemical diagrams, UML diagrams, etc.

7 Conclusion

The goal of creating computer tools that anticipate and tstdied user actions in
terms of their purpose and intent is an ambitious one thdtneil be realized for
quite some time. We can however realize some of the loweld@f¢he pyramid of
sophistication that will be required. Our emphasis in thhiapter has been on mini-
mizing the requirement that the user pre-specify modesderao communicate to
the program how their subsequent action should be integri#te have shown how
at the most basic Ul level, Overloaded Loop Selection esahblgtiple methods for
selection without the use of a toolbar. We have introducetseovative forms of
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Fig. 18 Cycle tap select of salient objects in a node-link diagrar®iagram partially formalized.
b. At the first pen tap on the enclosing graphic, the entireeriedelected (the enclosing graphic
plus text label). c. At the next pen tap the enclosing graploce is selected. d. At the next pen
tap just the side of the graphic rectangle is selelected.

recognition of a user’s gestural intent by considering gest paths and dynamics
in context of canvas content; these are the Inferred Mod®mpoband the Sloppy

Selection technique. And we have shown how recognitionimé@acontent enables
easy selection of meaningful objects through the simpléicligg command, under

the Cycle Tap Selection protocol.

We believe that many more techniques will fill in these lewélthe pyramid. In-
deed, we have taken note of several very interesting catiwilis by our co-workers
in this field. And we look forward to future developments irgadive modeling of
user tasks and goals that will lead to truly intelligent uségrfaces.
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