
Minimizing Modes for Smart Selection in
Sketching/Drawing Interfaces

Eric Saund and Edward Lank

1 Introduction

User interface modes are ubiquitous in both mouse-keyboardand pen-based user
interfaces for creating graphical material through sketching and drawing. Whether
choosing the straight-line or oval tool in Photoshop or PowerPoint, or tapping a
toolbar prior to lassoing a word in order to select it in OneNote, users know that,
before they can perform the content-relevant action they want, they need to tell the
computer the intent of what they are about to do by setting a mode. This chapter
reviews our research exploring whether prior setting of modes is always necessary,
and whether the future of user interface designs may promisemore fluid and direct
ways of creating and then selecting and editing words and pictures on a screen.

The purpose of modes is to allow actions performed with a single input device
to mean more than one thing. Physical paper permits two fundamental operations,
creation of marks, and erasure. For these, the user employs two basic tools, each
physically suited to its purpose: a marking tool (pencil, pen, typewriter keys and
ribbon) and an erasure tool (eraser, white-out). Computersare more powerful than
this. They permit not only creation and deletion, but all manner of modification such
as moving, resizing, duplicating, changing colors, changing line quality, changing
fonts, controlling depth order, etc.

To effect modification of content, computer authoring and editing tools provide
two dominant modes: a creation mode, and a selection mode. Modification of con-
tent is performed by first entering selection mode, then selecting graphical content
on the screen, and finally performing operations manipulating the selected content.

Is it possible to design user interfaces that improve the fluidity and precision
of the Selection step? Our research indicates that the answer can be yes. The key

Eric Saund
Palo Alto Research Center, e-mail: saund@parc.com

Edward Lank
University of Waterloo, e-mail: lank@cs.uwaterloo.ca

1



2 Eric Saund and Edward Lank

is to more fully exploit available information about user actions in the context of
canvas content, to infer the user’s intent. If the user’s click, tap, or stroke gesture
makes sense only in terms of one particular mode, then the program should allow
the user to perform that operation without first explicitly setting the mode, and then
post-facto interpret the action in terms of the correct mode.

Fig. 1 Increasingly sophisticated methods for inferring user intent build on one another. This chap-
ter offers examples highlighting techniques at several levels.

This may require sophisticated analysis of user’s gestures, the visual and seman-
tic structure of canvas content, and even user desires and goals, as shown in Figure
1. Such a project entails risk, for if the program guesses wrong the user interac-
tion can go seriously awry. But when done carefully, the principle can be extended
to not only inferring mode but other aspects of user intent, to create new levels of
intelligent user interfaces.

This chapter focuses on mode minimization in interfaces viasmarter selection
techniques. We address three challenges associated with selection:

• How best to incorporate multiple selection techniques intoa sketch interface.
• The drawback of requiring mode switching between content creation and selec-

tion.
• The challenge of selecting and interacting with salient groups of content.

We address these challenges through the creation of novel interaction techniques
contained within a series of experimental graphical creation and editing programs
that we have built. The ScanScribe document image editing program eliminates the
mode tool palette in a mouse/keyboard image editor by overloading mouse functions
for multiple selection methods. The InkScribe draw/edit program for pen comput-
ers eliminates prior Draw/Select mode selection through anInferred Mode interface
protocol. A technique we call Sloppy Selection illustratesintelligent object selec-
tion by analysis of gesture dynamics coupled with visual segmentation of canvas



Minimizing Modes for Smart Selection in Sketching/DrawingInterfaces 3

content. And the ConceptSketch program for creation and editing of Node-Link
diagrams shows how recognition of diagrammatic structure supports intelligent ob-
ject selection by cycling Click/Tap operations. These points in the gesture/canvas-
content analysis pyramid are discussed in the subsequent sections of this chapter.

2 The Cost of Modes

To motivate minimizing modes in interfaces, it is useful to examine the cost of
having a large set of modes. The salient research question iswhether some benefit,
either in efficiency or accuracy, exists for reducing the setof modes in an interface.
To examine this question, we describe our recent work in the cost of mode switching.
We first examine the temporal cost of large mode sets, and thenexplore the effect a
large set of modes has on mode switching errors within sketchinterfaces.

2.1 The Temporal Cost of Modes

Many researchers have studied variations in interaction techniques for stylus in-
put systems that seek to fluidly allow both command and input [2, 6, 9, 18]. This
research can be broadly separated into research that seeks to improve the acces-
sibility of software modes versus research that seeks alternatives to modes. While
our work primarily falls into the latter category, i.e. in reducing the need for modes
within interfaces, improving the accessibility of modes ininterfaces is an alternative
for improving the fluidity of sketch or graphical applications that contain multiple
modes.

One open question is whether or not there exists an “optimal”mode switching
technique, and if so, what the performance of that mode switching technique might
be. To partially address this question, Li et al. [9] studiedfive different existing
mode switching techniques. These include typical mode switching techniques that
have been extensively used, i.e. use of the eraser end of a dual ended stylus, use of
the barrel button on an electronic stylus, a press and hold technique similar to the
Apple Newton, and use of the non-preferred hand. They also examined a pressure
based technique based on work by Ramos et al. on pressure widgets [13]. In this list
of mode switching techniques, we note the absence of software widgets to control
modes, a result of general recognition of the fact that improvements are needed over
software-based modes [10]. Based on experimental data, Li et al. concluded that, of
the five techniques, non-preferred hand performed best based upon the metrics of
speed (fastest), error rate (second lowest), and user preference (most preferred).

Given the apparent benefit of non-preferred hand mode switching, we explored in
detail the specific temporal costs associated with non-preferred hand mode switch-
ing [7, 15, 16]. In this work, we looked at the time taken to initiate modes with
the non-preferred hand, and the total time taken to perform asimple drawing task,



4 Eric Saund and Edward Lank

given the need to switch modes. We found that, as the number ofmodes increased,
the total time taken to perform the drawing task increased, and that this increase was
a result of an increase in the time required to initiate modeswith the non-preferred
hand. We discovered [16], using an interface with between two and eight modes,
that the cost of manipulating modes in an interface could be modeled using the
Hick-Hyman Law [4, 5]. This law predicts a linear relationship between response
time and the information entropy,H, associated with n different responses, i.e.

RT = a + bH (1)

where the information entropy, as defined by Shannon, is:

H =

n

∑
i=1

pi log2

(

1
pi

)

(2)

wheren is the number of alternatives (in our study, the number of modes) andpi

is the probability of theith alternative.
Figure 2, reproduced from [16], depicts the linear relationship between informa-

tion entropy,H, and time to select a mode, as described in the previous paragraph.
To generate this data, we performed an experiment where we presented subjects
with a simple line bisecting task, and asked the subjects to draw a line of a specific
color, indicated by a mode. We measured the time taken to activate the mode with
the non-preferred hand, the time between mode activation and the pen tip touch-
ing the surface of the display, and the time taken to perform the drawing task on
a tablet computer. Analysis of variance shows that there is asignificant main ef-
fect of the number of modes on total time (F3,5 = 12.593, p < .001) for the task.
Analysis of variance for the time to activate modes, i.e. thetime to press the ap-
propriate button with the non-preferred hand, shows a significant effect of condition
(F3,5 = 22.826, p < .001). However, the time interval between mode switch and pen
down and the time to perform the drawing task did not vary significantly with num-
ber of modes (F3,5 = 1.460, p = 0.269 andF3,5 = 2.360, p = 0.101 respectively).

This work on the cost of mode switching provides evidence that, regardless of
the efficiency of any mode switching technique, as you add modes to an interface
the cost, measured as the time, to select any individual modewithin the interface
increases. By reducing the number of modes within an interface, we increase the
efficiency of the interface.

2.2 Mode Errors: The Mode Problem

In addition to temporal efficiency, the accuracy with which users can manipulate
an interface is an important consideration. It seems logical that larger numbers of
modes in interfaces increases the likelihood of mode errors. The web site Usability
First [20] defines as mode error as:



Minimizing Modes for Smart Selection in Sketching/DrawingInterfaces 5

Fig. 2 By studying interfaces with 2, 4, 6, and 8 modes, we show a linear relationship between
information entropy, H, and the time taken to select a mode. a. the case where all modes are equally
probable. b. varies the probabilities for different modes in the interface.

“A type of slip where a user performs an action appropriate toone situation in an-
other situation, common in software with multiple modes. Examples include draw-
ing software, where a user tries to use one drawing tool as if it were another (e.g.
brushing with the Fill tool), or text editors with both a command mode and an insert
mode where a user accidentally types commands and ends up inserting text.”

Two of the most common mode errors include use of the CAPS-lock and Insert
keys on keyboards, both of which alter the effect of keyboardinput.

Systems normally mitigate against mode errors by providingsome indicator for
modes. However, Sellen et al. [19] studied the use of visual feedback and kinesthetic
feedback to indicate modes. Visual feedback was provided bychanging the shape of
the cursor, and kinesthetic feedback by use of a footpedal. In their first study, they
used a non-locking piano footpedal, and users were forced tomaintain modes. In this
experiment, they found that kinesthetic feedback was more effective at preventing
mode errors than was visual feedback. They followed this study with a second study
that contrasted a locking and non-locking footpedal, and found fewer errors with
the non-locking footpedal. Based on Sellen’s work, Jef Raskin, in his bookThe
Humane Interface, advocates a mode switching technique he terms “quasimodes”.
With quasimodes, as with Sellen et al.’s nonlocking footpedal, a user holds down a
key to indicate modes.

The non-preferred hand mode switching technique used by Li et al. [9] and
by us in our work on the temporal cost of modes [16] is a quasimode, based on
Raskin’s definition. In Li et al.’s work in two-mode interfaces, non-preferred hand
mode switching resulted in an error rate of approximately 1.1%, slightly worse than
the using the eraser end of the electronic stylus. One question unanswered by Li et
al. is whether a relationship exists between the number of modes and the frequency
of mode errors. It seems likely that increasing the number ofmodes increases the
frequency of mode errors: Users are forced to choose one froma larger number of
alternatives, giving rise to a higher probability of selecting the incorrect mode from



6 Eric Saund and Edward Lank

among the set of available modes. However, whether the increase in mode errors as
number of modes increases is a logarithmic, linear, or otherfunction of number of
modes provides an understanding of the expected cost, in accuracy, of adding addi-
tional modes to an interface, and the corresponding benefit associated with reducing
the mode set within an interface. To address this question, we examined mode er-
rors as a function of number of modes in a sketch interface in our work modeling
the cost of mode switching [16]. We observed error rates of between 3.3% in the
two-mode condition and 7.5% in the eight mode condition [16]. Figure 3 depicts
the mode error rate against number of modes in the interface.In this graph, we see
a linear correlation (R2

= 0.94) between number of modes and frequency of mode
errors in our experimental task.

Fig. 3 Error rate as a function of number of modes in an interface.

Given our results on the relative efficiency and accuracy of interfaces as a func-
tion of the number of modes within the interface, we claim that reducing the number
of modes is a worthwhile goal. In the following sections, we examine user interface
techniques and recognition techniques that we have developed to accomplish this.

3 Overloaded Loop Selection: UI Design to Infer Selection Mode

Many graphical editing programs support multiple means forselecting image mate-
rial through the use of tool palettes. For example, Photoshop offers both a rectangle
selection tool and a lasso tool, among others. Selection of one of these tools puts



Minimizing Modes for Smart Selection in Sketching/DrawingInterfaces 7

the interface into a distinct Selection mode. The rectangleis faster for selecting iso-
lated objects, but the lasso is capable of “threading the needle” and selecting objects
among clutter, and generally of creating oddly shaped selection regions.

We propose that the most straightforward means for amplifying the selection op-
tions available to users without requiring attention to a tool palette is to mix them
together in a single Select Mode, and infer the user’s intentfrom the gesture they
actually produce. We invoke this idea in a technique called Overloaded Loop Se-
lection. The user is free to drag a selection gesture that maytake form as either a
rectangle or a lasso. Both are displayed simultaneously. Ifthe user proceeds to draw
a nearly-closed loop, the rectangle disappears and the lasso region is chosen. But if
the user releases the mouse while the rectangle is displayed, the rectangle selection
region is used. See Figure 4.

Fig. 4 Overloaded loop selection initiated by dragging the mouse with the left button held. Both
a selection rectangle and lasso path are active. Closing thepath causes the rectangle to disappear,
leaving lasso selection. If the button is released while therectangle is visible, rectangle selection is
used instead.

Overloaded Loop Selection is employed by the ScanScribe document image ed-
itor program first introduced at UIST 2003 [17]. ScanScribe takes this idea two
steps further. First, in addition to overloading rectangleand lasso selection, Selec-
tion Mode supports Cycle Click Selection, which extends thecapability to select by
clicking the mouse on an object. This is described in Section6. Second, ScanScribe
supports Polygon selection, by which users are able to select image material by plac-
ing and adjusting the vertices of an enclosing polygon. Polygon selection is invoked



8 Eric Saund and Edward Lank

as a mode, but conveniently so by double-clicking the mouse over a background
region, without the need for a separate toolbar.

Overloaded Loop Selection is an example of UI design minimizing prior selec-
tion of modes through analysis of the user action alone, without regard to the un-
derlying canvas content. Other examples exist as interfacetechniques that analyze
user action to determine effect in sketch interfaces. Hinckley et al. [6] proposed
using a post-gesture delimiter technique, called a “pig-tail”, for determining ges-
ture interpretation, and they compared the post-gesture delimiter to using a handle,
a timeout, or a button to alter a gesture’s “mode”. Grossman et al. [3] proposed
“hover widgets”, where the tracking state of a Tablet PC is used to access modes,
and they compared it to using a software button to switch interface modes. Finally,
Ramos and Balakrishnan [12] describe a “pressure mark” technique, where the dif-
ferent pressure associated with a mark maps to different interpretations. However,
in each of these cases, the need exists to select from among the possible alternative
interpretations, either during or after the action. As noted in Section 2, there is a
cost associated with selecting amongst alternatives. By minimizing modes within
an interface, we reduce the cost of selecting any mode withinthe interface.

While the UI design of the ScanScribe document image editor is modeled after
and builds on PowerPoint, ScanScribe is designed primarilyto be an editing tool
for mouse/keyboard platforms and does not offer many options for entering new
material. Freeform entry of sketch strokes is possible, butonly by explicitly enter-
ing a separate Freeform Draw mode. The pen/stylus platform,on the other hand,
demands more seamless interplay of drawing/sketching entry and select/command
manipulation of canvas content.

4 The Inferred Mode Protocol for Stylus Drawing and Selection
with a Pen

The prototypical application for pen/stylus computing platforms is the Electronic
Whiteboard, which generally supports freeform drawing andhandwriting, then se-
lection of digital ink for cut, copy, move, resize, color change, etc. Unconstrained
electronic notetaking applications fall within this definition. One of the first elec-
tronic whiteboard programs to gain significant contemplation was the Tivoli [11]
program for the Xerox Liveboard.

The fundamental problem with pen electronic whiteboard programs is how to
support drawing, selection, and commands on selected material through a single
pen/stylus channel. The designers of Tivoli experimented with pen barrel buttons,
tap-tap gestures, and post-lasso pigtail gestures, among other things, but eventually
settled on explicit setting of Draw/Select mode through a side toolbar. Later, the
Microsoft Journal program for the TabletPC settled on priorsetting of Select mode
through either tapping on a toolbar icon or else stationary holding of the pen for a
predetermined length of time. All of these methods for mode setting fail to deliver
seamless fluid user action. Barrel buttons are awkward to use. Toolbars require redi-



Minimizing Modes for Smart Selection in Sketching/DrawingInterfaces 9

rection of user focus away from the canvas. And stationary hover requires waiting
for the hover threshold timeout and also leads to inadvertent entry of Select mode
when the user may intending to draw but momentarily simply pausing to think with
the pen down. The problem, we believe, is nothow the user is supposed to set Draw
versus Select mode, but that they have to do it at all.

a

b

Fig. 5 Two simple tasks for a pen drawing/editing platform. a. TaskI involves only draw a series
of shapes. b. Task II involves drawing, then selecting and moving some of the drawn objects (as if
the user changed their mind about where to place them), then subsequent additional drawing



10 Eric Saund and Edward Lank

4.1 The Mode Problem in Electronic Whiteboard Programs

We illustrate the mode problem through two simple tasks which could be part of
a larger document creation/editing session. The purpose ofthese tasks is not to
achieve the final result as efficiently as possible, but rather to simulate the process a
user might go through, including changing their mind in midstream and rearranging
material they have already placed on the canvas. In Task I (Figure 5a) the user draws
a triangle, some overlapping squares, and a diagonal line. In Task II (Figure 5b), they
draw these same objects, but midway through, they decide to change the location of
the overlapping squares. To do this, they would need to use the drawing tool’s edit
capabilities to select the squares and drag them to their newdesired position on the
canvas. This is where trouble lies. Under a conventional mode-based interface de-
sign, the user would enter a selection mode and draw a lasso around the squares to
select them. Then, they would have to exit selection mode to return to drawing. If,
in the creative moment, these extra UI steps are not completed correctly, the task is
thrown off track.

4.2 Analytical Tool: The Interaction Flow Diagram

In order to gain insight into how and why the requirement for mode setting can
become a serious problem for pen-based drawing and editing systems, we intro-
duce an analytical tool for graphically tracing the steps ofinteraction between user
actions and program interfaces. TheInteraction Flow Diagram is a form of state
diagram, but one that emphasizes the modal state of the program and the operations
available to users within each mode. In a conventional user interface state machine
diagram, nodes denote internal states of the program and arcs denote possible tran-
sitions between them. In the Interaction Flow diagram, nodes are differentiated into
three primary types: (1) those that depict internal machinestate and information
available to the user through the machine’s display (rectangles); (2) those that in-
dicate intentional user actions (rounded rectangles); (3)those that indicate a choice
or decision point for the user (circles). The Interaction Flow diagram is particularly
useful in dissecting user interaction bugs and aspects of user interface design that
enable them.

The difference is illustrated in Figure 6, which presents the state machine dia-
gram and Interaction Flow Diagram representing the simple interaction afforded by
paper, pencil, and eraser (or equivalently, whiteboard, marker, and eraser). There
is no computer program here, the only action object in this diagram is the user’s
writing/drawing activities, which include two functions,creating marks, and eras-
ing them.

The State Machine diagram represents the use of pencil, eraser and paper as
transition among four states: Pencil Poised, Marking, Eraser Poised, and Erasing.
The transition arcs reflect the logic of the system, for example the fact that before
one can create a mark, one must first hold the pencil, then place its tip to the paper.



Minimizing Modes for Smart Selection in Sketching/DrawingInterfaces 11

a

b

Fig. 6 a. State Machine and b. Interaction Flow Diagram for pencil and eraser. Rectangles repre-
sent a quiescent state of the interface. Rounded rectanglesrepresent user actions. Circles represent
user choices among available actions, given the presentation state.



12 Eric Saund and Edward Lank

The Interaction Flow diagram portrays the interaction in a manner more closely
resembling the user’s experience. State display nodes, represented by rectangular
boxes, indicate information visually (or through other senses) available to the user.
In particular, in the quiescent state between actions, the user can see the markings
on the page, and they can sense whether the pencil or eraser ispoised above the
page. Circles indicate deliberative choices, such as between either making a mark
or switching to the eraser. The Interaction Flow diagram thus re-configures selected
arcs exiting from nodes in the formal State Machine diagram to make explicit certain
decisions the user can make at the level of significant functional operations of the
tool. Finally, actual user actions are shown as rounded boxes. Often Interaction Flow
diagrams package up tedious details of the State Machine diagram. For example, the
state transition subgraph of touching, dragging, and lifting the pencil are wrapped
into the functional action (rounded box) labeled “draw”.

The Interaction Flow diagram in Figure 6b reflects the simplicity of the interac-
tion model for pencil and paper. The current draw/erase modeis always indicated
by visual and/or tactile display. The choice to switch modesis always available. To
execute a mode switch the user carries out the physical act that brings the desired
tool end into position for use. Once in Draw or Erase mode, thesystem stays in that
mode by default. The acts of continuously writing or continuously erasing are tight
loops through states in Figure 6b. When writing fluidly the user may effectively
ignore the choice to switch into erase mode. And significantly, for the purpose of
managing their interaction with the pencil, the user has no requirement to attend to
the information display (i.e. the markings on the surface and the pencil tip in view).
Rather, they are free to write or draw “open loop,” paying attention to the content of
their writing instead of the user interface features of the tool.

With the greater functionality of computer programs for creating and editing
graphical material comes greater complexity of the user interface. Perhaps the most
successful of these is PowerPoint. A simplified User Interaction Flow Diagram for
the PowerPoint-style interface is shown in Figure 7.

The fundamental operations here are creation of new text or graphic objects, se-
lection of objects, and modifying selected objects. These are reflected in three state
display nodes (rectangular boxes), in Figure 7. When nothing is selected (Node
PPT-IF-2), the interface is in Select mode. From here the user has the option of
performing a selection operation (PPT-IF-8) or else entering Create/Entry mode by
choosing an object type to create by clicking a menu or toolbar icon (PPT-IF-5).
Either of these choices results in an internal change of machine state, and also in an
augmentation of the display, such as highlighting of selected material (PPT-IF-3),
or change from an arrow to crosshair cursor (PPT-IF-1). Oncesomething is selected
(PPT-IF-3), the interface enters Command Mode, in which selected material is high-
lighted. From here the user has a choice to deselect it, modify it, select additional
objects, or switch to a create mode.

The default Mode of PowerPoint is Select Mode. PowerPoint permits users to
select graphical material by either of two means, by tappingon an object, or by
dragging a rectangle which results in selection of all objects entirely enclosed.



Minimizing Modes for Smart Selection in Sketching/DrawingInterfaces 13

Fig. 7 Simplified Interaction Flow Diagram for the PowerPoint structured graphics editor.

4.3 Interaction Flow Analysis of Mode-Based Selection and
Drawing

The Interaction Flow Diagram provides insight into exactlywhat can go wrong with
prior selection of mode in an electronic whiteboard program. Let us consider in de-
tail Task I and Task II of Figure 5 in terms of the Interaction Flow for a conventional
mode-based Electronic Whiteboard program, such as Tivoli or Microsoft Journal.
See Figure 8. This protocol bears strong resemblance to the mouse-based interac-
tion protocol design of PowerPoint and other structured graphics editors. The main
difference is that Create/Entry Mode (also known as Draw Mode for a pen/stylus
program) and Command Mode are persistent. When in Draw Mode (the leftmost
Display/User Action column of the diagram) the act of makingrepeated marks with
the stylus is fluid and unconstrained, just as with a physicalpen or pencil. From
Draw Mode, the user may switch to Select Mode by an explicit action such as tap-
ping a toolbar item or releasing the stylus barrel button. InSelect Mode the user
may select objects by tapping or lasso.

Although Draw and Select modes are independent nodes in the Interaction Pro-
tocol (CS-IF-1 and CS-IF-2), an Electronic Whiteboard program may or may not
actually provide a visible indicator of the current mode. Intablets and electronic
whiteboards whose hardware provides pen hover detection, alternative Draw and
Select cursors can do this. In purely touch-based stylus systems any visual mode
indicator must be placed peripherally if at all. In either case, users are famous for
ignoring mode indications rendered via cursor shape.

The mode problem arises when users perform as if the system were in one mode
when in fact it is in another. Our sample draw/edit tasks illustrate where the inter-
action protocol can lead users to make errors. Task I is not a problem. This involves
simply adding strokes one after another, in draw mode, as shown in Figure 9.



14 Eric Saund and Edward Lank

Fig. 8 Representative Interaction Flow Diagram for an ElectronicWhiteboard program for
Pen/Stylus platforms.

Fig. 9 Steps of the interaction flow for Task I under the InteractionFlow protocol of a conven-
tional Electronic Whiteboard program. Numbers indicate nodes of the Interaction Flow Diagram
of Figure 8.

The interaction flow forcorrect performance of Task II is shown in Figure 10.
Note that in order to move the pair of squares the user must first switch to Select
mode, then draw a lasso around the squares in order to select them, then drag the
selected objects to another position, and finally switch back to Draw mode.

The common interaction bug in this protocol is failure to switch modes before
executing the next pen gesture or stroke. Figure 11 shows theinteraction flow that
results from failing to enter Select mode, CS-IF-4. The userbehaves as if they are
proceeding from Node CS-IF-2, performing what is intended to be a selection ges-
ture. But the program interprets this as a drawn stroke, and renders it as such. Seeing
a drawn circle instead of a visual indication of strokes selected, the user is alerted
to the problem. They must then execute a repair protocol of atleast three additional
actions, plus they must devote attention to the display to verify that they are back on
track, before proceeding with the intended task.



Minimizing Modes for Smart Selection in Sketching/DrawingInterfaces 15

Fig. 10 Steps of the interaction flow for correct performance of TaskII under the Interaction
Flow protocol of a conventional Electronic Whiteboard program. Numbers indicate nodes of the
Interaction Flow Diagram of Figure 8.

Fig. 11 Steps of the interaction flow for disrupted performance of Task II due to a common mode
error, under the Interaction Flow protocol of a conventional Electronic Whiteboard program. Num-
bers indicate nodes of the Interaction Flow Diagram of Figure 8.



16 Eric Saund and Edward Lank

In a similar fashion, by failing to return to Draw mode after performing an edit
operation, users are alerted to the problem and must interrupt their flow of inter-
action in order to recover and re-synchronize their mental model of the interaction
with the machine state of the program.

4.4 Inferred Mode Protocol: Inferring Draw/Select Mode

To address the Draw/Select Mode problem for pen/stylus interfaces, we introduced
a technique called the Inferred Mode protocol [18], used in the InkScribe pen-based
sketch tool. This protocol allows the user to perform eithera draw/entry or lasso
selection gesture without a priori specification of mode. The intent of the stroke is
inferred from the stroke’s shape and its relation to existing canvas content. If the
stroke is not closed, or if it is closed but does not enclose any existing material,
then it cannot be a lasso selection gesture so is interpretedas new ink. If however
it is approximately closed and does enclose markings on the canvas (which can be
any combination of digital ink and bitmap image), the gesture is ambiguous. In this
case, the interface presents a pop-up menu labeled, “Select?”, in a nearby but out-
of-the-way location. The user may then elect either to tap the menu item to select
the enclosed material, or else simply ignore it and keep writing or drawing.

The Inferred Mode Protocol also supports Cycle Tap Select, described in Section
6. In doing so, the protocol prohibits the user from drawing dots, or short tap strokes,
on top of or very near to existing markings.

The Interaction Flow Diagram for the Inferred Mode Protocolis shown in Figure
12. Note that there are no user action nodes by which the user explicitly switches
to a Draw or Command mode. Instead, the logic of mode switching is embedded in
the inference of user intent based on the user’s actions in context.

At quiescence the user can be faced with one of four visually distinguished situ-
ations: nothing is selected (IM-IF-1); nothing is selectedbut the pop-up menu item
saying “Select?” is displayed (IM-IF-2); one or more strokes are selected (IM-IF-3);
one or more strokes are selected and a command menu is visible(IM-IF-4). From
these four possibilities the flow of control converges onto one unified set of choices
that are always available regardless of the selection state. Namely, the user can at any
time draw more material (IM-IF-7), they can at any time perform a selection gesture
(IM-IF-8), and they can at any time reset the selection status to nothing selected
by tapping in the background (IM-IF-9). The final options, toperform a gesture
to move or modify selected material (IM-IF-10 and IM-IF-11), are operative only
when something is actually selected.

The Inferred-Mode protocol introduces a new type of node to the Interaction
Flow notation. This is the Intent Inference node, shown as a diamond (IM-IF-12),
which represents a decision process that the system performs on the input gesture
drawn at user action nodes IM-IF-7 or IM-IF-8. Note that IM-IF-7 or IM-IF-8 reflect
only user intent, not any overtly distinguishable action orstate. The purpose of this
decision is to determine whether an input pen trajectory is clearly a drawn stroke,



Minimizing Modes for Smart Selection in Sketching/DrawingInterfaces 17

a

b

Fig. 12 Interaction Flow diagram for the Inferred Mode protocol. The diamond represents the
program inferring the user’s intended mode. If the intent isambiguous, a pop-up mediator choice
(b) is presented which the user may either tap to select encircled material, or ignore and continue
writing or drawing.



18 Eric Saund and Edward Lank

clearly a selection operation, or else ambiguous. The decision is made on the basis
of certain rules which make use of the machine’s prior state,plus the stroke’s loca-
tion, shape, and proximity to other strokes on the canvas. For example, a trajectory
creating a closed path is interpreted in the following way:

• If the path encloses no other strokes then it is clearly a drawn stroke.
• If the path encloses at least one other stroke AND some other strokes are selected,

then the path is interpreted as a selection gesture that addsthe enclosed strokes
to the set of selected strokes.

• If nothing is selected and the path encloses at least one other stroke, then the
intent is ambiguous. The user could be intending to select the enclosed strokes,
or they could simply want to draw a circle around them.

a

b

Fig. 13 Interaction flow for Task I (a) and Task II (b) under the Inferred Mode Protocol. Numbers
indicate nodes in Figure 12. Note that the user’s actions areidentical until the point at which they
either ignore or tap the pop-up “Select?” button at step IM-IF-3 (3 in the figure).



Minimizing Modes for Smart Selection in Sketching/DrawingInterfaces 19

Critically, this gesture interpretation is made after the stroke, and the burden is
lifted from the user to specify the correct Draw or Command mode prior to per-
forming the motion. Only if the stroke is ambiguous is the user presented with the
“Select?” mediator, at which time they have the choice of tapping the pen to select
the enclosed material, or else ignoring it and proceeding todraw either additional
digital ink strokes or else an entirely different enclosinggesture to select something
else (IM-IF-6).

Figure 13 details the interaction flow for Sample Tasks I and II under the Inferred
Mode interaction protocol. Tasks I and II are performed identically through the first
four actions, where the user executes a circular pen trajectory enclosing the squares.
At this point the program cannot know whether the user intends to draw a circle
or select the squares it encloses. The system displays the popup “Select?” menu
item. Here the two tasks diverge. Under Task I, the user ignores the menu item and
continues drawing, completing the task with the entry of thefinal diagonal line.
Under Task II, where the user intends to move the squares, they tap on the “Select?”
button and the squares become highlighted as selected objects. The user then drags
them to the target location, and, without explicitly switching modes, proceeds to
complete the task by drawing a circle around the squares, then the final diagonal
line.

The Inferred Mode Protocol for pen/stylus interfaces makesminimal use of struc-
ture analysis of canvas content, limited simply to determining whether a stroke is
approximately closed and if so, whether it encloses existing markings. Further de-
velopment of intelligent user interfaces involves more sophisticated analysis of the
visible canvas in conjunction with the dynamics of the user’s stroke.

5 Sloppy Selection: Inferring Intended Content of an Ambiguous
Selection

Let us assume that the digital ink and bitmap images on a canvas are not arbitrary,
random strokes and images, but are meaningful, structured objects. Most instances
in which a user intends to cut, copy, move, or otherwise modify material, they do
so with respect to this structure. It makes sense to bias interpretation of the user’s
actions in terms of the coherent objects and groupings present on the canvas. The
most commonplace application of this principle applies to the characters, words,
lines, and paragraphs comprising text. While always permitting exceptions, selec-
tion operations should tend toward selection of these units.

In accordance with this principle, we have suggested a user interface technique
for lasso selection calledSloppy Selection [8]. Sloppy Selection observes that users’
lasso gestures may at times only approximately encircle theobject(s) they intend to
select. To the extent that the user perceives objects on the canvas as being organized
into salient chunks, a quick, approximate selection gesture may be “good enough”.
Conversely, we assume that if users intend to select arbitrary, non-salient regions of
the canvas, they will do so slowly and deliberately. The Sloppy Selection technique



20 Eric Saund and Edward Lank

thus analyzes the dynamics of the user’s lasso gesture to ascertain whether and in
what portions of the gesture the user is performing a rough, quick-and-dirty stroke,
versus a careful, deliberate partitioning of selected versus excluded material.

In order to implement Sloppy Selection, we must employ a model of user ges-
tures under casual and deliberate intent. We assume that casual, “sloppy” strokes are
performed balistically, with a single motor planning eventinvolving minimal mid-
course correction. This type of motion is known to follow theminimum jerk prin-
ciple, from the biological motor control literature. Figure 14a illustrates the speed
profile of a fast, single-motion lasso gesture. Slowing occurs at locations of highest
curvature according to a 2/3 power law. Conversely, careful, deliberate strokes occur
at a much slower speed more closely obeying a “tunnel law” of motion [1], as seen
in Figure 14b.

We exploit the difference between fast casual gestures and slow, deliberate ges-
tures by inverting the local speed profile along a gesture to infer what we intpret as
an effective selection tolerance width. Where a gesture’s speed is less than would
be predicted by a minimum jerk motion, we assume that the useris deliberately
slowing down to more carefully adjust the gesture path, and therefore the effective
tolerance narrows.

To combine the tolerance width with image structure analysis, we first construct
candidate salient objects by performing visual segmentation and grouping on the
existing canvas digital ink. Then, at the conclusion of a potential selection stroke we
analyze the user’s inferred selection tolerances. Where a lasso’s selection tolerance
permits, we divide included from excluded material according to the segmented
units. But where the selection tolerance narrows, we split words or stokes literally
along the lasso path, as shown in Figure 15.

6 Cycle Tap Selection: Exploiting Structure Recognition

The simplest and most direct method of selecting material with a mouse or pen is,
respectively, mouse click (typically using the left mouse button) or pen tap. The
problem is that this action is ambiguous with respect to the meaningful structure of
canvas objects, because any given section of digital ink or fragment of bitmap im-
age may belong to multiple coherent objects. The dominant PowerPoint UI design
for graphics interfaces addresses this ambiguity through the use of groups. Prim-
itive objects can be grouped hierarchically into groups that collectively form tree
structures. See Figure 16b. Clicking on any primitive object automatically causes
selection of the collection of primitive objects descending from the root node of any
grouping tree the clicked object belongs to.

In PowerPoint-type UIs, groups are both a blessing and a curse. Once the user has
grouped an object, in order to select that object and modify its location or properties,
they must first un-group it. At this point, the group structure is lost and to get it
back the user has to reconstruct it manually, which can become quite tedious. Thus,



Minimizing Modes for Smart Selection in Sketching/DrawingInterfaces 21

Fig. 14 a. Speed profile for a “sloppy” selection gesture. b. Speed profile for a “careful” selection
gesture. Note the relatively slower speed for the straight section where the gesture is threading
between two lines of text.

ambiguity and actionable membership in multiple groups as such are not actually
supported.

We extend the notion of grouping primitive elements into meaningful larger
structures in two stages, each of which carries design for intelligent UIs a step fur-
ther. These steps are first, lattice groups, and second, automatic group formation
through structure recognition.

To permit primitive strokes and bitmap objects to belong to more than one group
simultaneously, we reformulate group structure from a hierarchical tree to a lattice.
In a lattice, a child node may have more than one parent, and thus may participate in
more than one group. This idea is taken to an extreme in the ScanScribe document
image editor and the InkScribe digital ink sketch creation and editing tool. In these



22 Eric Saund and Edward Lank

Fig. 15 Steps in the sloppy selection gesture interpretation technique. a., b. Detection of word
objects. c., d, Inference of gesture carefulness vs. sloppiness. e., f. Decision whether to select
based on word groups or precise gesture path.

programs, the lattice is flat, consisting of only primitivesand a layer representing
groups of primitives. Figure 16c illustrates that, for example, a lattice representation
is sensible for maintaining the meaningful groupings of a tabular arrangement of
cells. Any given cell simultaneously belongs to a row, a column, and the entire
table.

The user interface design problem posed by lattice groupings is, how to give the
user control over selection in terms of the multiple available options. A straight-
forward approach is called Cycle Click/Tap Select. Clicking (a mouse) or tapping
(a pen) once on a stroke or bitmap object causes the primitiveobject itself to be
selected. Tapping again selects one of the groups that object belongs to to become
selected. Tapping repeatedly then cycles through the available groups. Our expe-
rience with ScanScribe and InkScribe suggest that the CycleClick/Tap Selection
technique is effective when the groups are all sensible and limited to about five in
number. Each tap requires visual inspection of the selection (indicated for example
by a highlight halo).

In basic ScanScribe and InkScribe, groups are formed in either of two ways. Any
combination of primitives can be selected manually by clicking with the shift key
(in ScanScribe for the mouse platform) or tapping individual objects (in InkScribe
for the pen/stylus platform). Then, an explicit menu item permits explicit creation of
a group. Or, groups may be formed automatically when the usermanually selects a



Minimizing Modes for Smart Selection in Sketching/DrawingInterfaces 23

Fig. 16 a. Items arranged in tabular layout. b Hierarchical groupings as rows then table. c. Lattice
structure permitting elements to belong to both row and column groups as well as the entire table.

collection of primitives, and then performs any operation such as moving, copying,
changing color, etc.

This approach to multiple, overlapping group structure forms the basis for a
second, more advanced form of meaningful group-based selection of by direct
Click/Tap. That is for groups to be formed automatically through automatic struc-
ture recognition.

Automatic structure recognition is exemplified in a programwe have developed
for creating and editing node-link diagrams, called ConceptSketch. Node-link dia-
grams are the basis for a popular graphical notation, calledvariously Concept Maps,
or Mind Maps, for brainstorming and organizing informationthrough labeled nodes
representing cognitive concepts, and (optionally labeled) links depicting relations
among concepts. The popularity of concept maps is evidencedby a multitude of
free and commercial programs available for creating and editing these diagrams. At
this writing, however, none of the available programs offers a truly fluid user inter-
face permitting users to simply draw a concept map in freeform fashion and then
select nodes, links, and labels as meaningful objects to rearrange, form and delete
new nodes and links. and label or annotate. By design, ConceptSketch is an ex-



24 Eric Saund and Edward Lank

tension of a basic Electronic Whiteboard that knows about node-link diagrams and
automatically recognizes the constructs of this notation automatically as the user
creates it.

The key to a powerful concept mapping program is automatic recognition algo-
rithms that can identify and organize the elements of a concept map, including text
representing node labels, graphical node indicators, links, arrows, link labels, and
arbitrary annotative text and graphics. The recognition strategies we have developed
lie beyond the scope of this article. Here, of interest are the user interface techniques
for accessing the meaningful diagrammatic objects once they have been recognized.

The Cycle Click/Tap select technique serves this purpose. See Figures 17 and 18.
In prototypical use, we presume that the user’s overall goalis to evolve a rough and
malliable sketch into a formalized diagram. The meaningfulobjects here are: (1)
the graphical object representing the concept nodes; (2) the textual labels of these
nodes; (3) entire nodes consisting of both node graphics andtheir textual labels; (4)
the curvilinear lines linking concepts; (5) arrows or otherterminating graphics of
link graphics; (6) textual labels associated with graphical links; (7) entire links con-
sisting of the link lines, their terminator graphics, and their labels; (8) ancillary text;
(9) ancillary graphics. To support Cycle Click/Tap select,recognition algorithms
need to build structured representations of the canvas thatreflect these groupings of
primitive digital ink and text objects. Any given primitivemay belong to more than
one group. Figure 18 illustrates that in the ConceptSketch program, the user may
select different levels of structure by repeated tapping. Tapping once on the side of
a rectangle forming the enclosing graphic of a node causes that node to be selected,
including its text label; tapping again at the same place cycles to selection of just
the rectangle; tapping again cycles to selection of just theside of the rectangle.

For creation and editing of Concept Maps using a pen/stylus in ConceptSketch,
the Cycle Tap Select protocol is embedded within the Inferred Mode protocol of
Figure 12 in particular, within the Tap selection Node IM-IF-8.

This principle of course applies to all types of graphical structure, across all do-
mains for which effective recognition algorithms can be devised, including circuit
diagrams, mathematical notation, physical simulations, engineering and architec-
tural drawings, chemical diagrams, UML diagrams, etc.

7 Conclusion

The goal of creating computer tools that anticipate and understand user actions in
terms of their purpose and intent is an ambitious one that will not be realized for
quite some time. We can however realize some of the lower levels of the pyramid of
sophistication that will be required. Our emphasis in this chapter has been on mini-
mizing the requirement that the user pre-specify modes in order to communicate to
the program how their subsequent action should be interpreted. We have shown how
at the most basic UI level, Overloaded Loop Selection enables multiple methods for
selection without the use of a toolbar. We have introduced conservative forms of



Minimizing Modes for Smart Selection in Sketching/DrawingInterfaces 25

a

b

Fig. 17 a. Example sketch. Strokes are labeled in order of input by a pen. b. Hierarchical graph
representing the objects and relations of the sketch in terms of the elements of a Node-Link dia-
gram.



26 Eric Saund and Edward Lank

Fig. 18 Cycle tap select of salient objects in a node-link diagram. a. Diagram partially formalized.
b. At the first pen tap on the enclosing graphic, the entire node is selected (the enclosing graphic
plus text label). c. At the next pen tap the enclosing graphicalone is selected. d. At the next pen
tap just the side of the graphic rectangle is selelected.

recognition of a user’s gestural intent by considering gestures’ paths and dynamics
in context of canvas content; these are the Inferred Mode protocol and the Sloppy
Selection technique. And we have shown how recognition of canvas content enables
easy selection of meaningful objects through the simple tap/click command, under
the Cycle Tap Selection protocol.

We believe that many more techniques will fill in these levelsof the pyramid. In-
deed, we have taken note of several very interesting contributions by our co-workers
in this field. And we look forward to future developments in cognitive modeling of
user tasks and goals that will lead to truly intelligent userinterfaces.



Minimizing Modes for Smart Selection in Sketching/DrawingInterfaces 27

8 References

References

1. Accot, J. and Zhai, S.; 1997; “Beyond Fitts’ law: models for trajectory-based HCI tasks,”Proc
ACM CHI pp. 295-302.

2. Accot, J. and Zhai, S; 2002; “More than dotting the i’s — foundations for crossing-based
interfaces,” Proc. CHI ’02 (SIGCHI conference on Human factors in computing systems), pp.
73-80.

3. Grossman, T., Hinckley, K., Baudisch, P., Agrawala, M., Balakrishnan, R.; 2006; “Hover wid-
gets: using the tracking state to extend the capabilities ofpen-operated devices”,Proc. ACM
CHI, 861-870.

4. Hick, W.; 1952; “On the rate of gain of information”, Quarterly Journal of Experimental Psy-
chology, V. 4, pp. 11-36.

5. Hyman, R.; 1953; “Stimulus information as a determinant of reaction time,” Journal of Exper-
imental Psychology, V. 45, pp. 188-196.

6. Hinckley, K., Baudisch, P., Ramos, G., and Guimbretiere,F.; 2005; “Design and analysis of
delimiters for selection-action pen gesture phrases in scriboli,” Proc. CHI ’05 (SIGCHI con-
ference on Human factors in computing systems), pp. 451-460.

7. Lank, E., Ruiz, J., and Cowan, W.; 2006; “Concurrent bimanual stylus interaction: a study of
non-preferred hand mode manipulation,” GI ’06 (Proceedings of Graphics Interface 2006), pp.
17-24, Quebec.

8. Lank, E., and Saund, E.; 2005; “Sloppy Selection: Providing an Accurate Interpretation of
Imprecise Selection Gestures,” Computers and Graphics, Special Issue on Pen Computing V.
29, No. 4, August 2005, pp. 183-192.

9. Li, Y., Hinckley, K., Guan, Z., and Landay, J.; 2005; “Experimental analysis of mode switch-
ing techniques in pen-based user interfaces,” Proc. CHI ’05(SIGCHI conference on Human
factors in computing systems), pp. 461-470.

10. Norman, D.; 1982; “Steps toward a cognitive engineering: Design rules based on analyses of
human error,” Proceedings of the 1982 conference on Human factors in computing systems,
pp. 378-382, Gaithersburg, Maryland.

11. Pedersen, E., McCall, K., Moran, T, and Halasz, F.; 1993;“Tivoli: An electronic whiteboard
for informal workgroup meetings,”Proc ACM CHI, 391-398.

12. Ramos, G., and Balakrishnan, R.; 2007; “Pressure Marks”, Proc. ACM CHI, 1375-1384.
13. Ramos, G., Boulos, M., and Balakrishnan, R.; 2004; “Pressure widgets,”, Proc. CHI ’04

(SIGCHI conference on Human factors in computing systems),pp. 487-494.
14. Raskin, J.,The Humane Interface; 2000; Addison Wesley.
15. Ruiz, J. and Lank, E.; 2007; “A study on the scalability ofnon-preferred hand mode manipu-

lation,” ICMI ’07: Proceedings of the 9th international conference on Multimodal interfaces,
pp. 170-177, Nagoya, Aichi, Japan.

16. , Ruiz, J., Bunt, A., and Lank, E.; 2008; “A model of non-preferred hand mode switching,” GI
’08 (Proceedings of graphics interface 2008), pp. 49-56, Windsor, Ontario, Canada.

17. Saund, E., Fleet, D., Larner, D., and Mahoney, J.; 2003; “Perceptually-Supported Image Edit-
ing of Text and Graphics,” Proc. UIST ’03 (ACM Symposium on User Interface Software and
Technology), pp. 183-192.

18. Saund, E., and Lank, E; 2003; “Stylus Input and Editing Without Prior Selection of Mode,”
Proc. UIST ’03 (ACM Symposium on User Interface Software andTechnology), pp. 213-216.

19. Sellen, A., Kurtenbach, G., and Buxton, W.; 1992; “The Prevention of Mode Errors through
Sensory Feedback,” Human-Computer Interaction, 7:2, p. 141-164.

20. http://www.usabilityfirst.com, June, 2008.


