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Abstract

This paper is about the way that spatial scale mediates the relationship be-

tween visual shape and visual texture. We seek ultimately representations for

signi�cant image events that will support multiple later visual processes, in-

cluding re�nement and exploitation of �gure/ground relations (segmentation),

indexing and matching with object and scene models, and directing visual at-

tention for the selection and application of further processing steps. These

representations should support description of a scene in abundant detail and

multiple levels of abstraction, yet favor omission of information that is un-

likely to be useful. We introduce the notion of a texture scale-space making

explicit the relationship between two scales of interest, the characteristic grain

size of image elements, and the size of a frame of view. The analysis en-

tails consideration of several interrelated concepts, including the notion of an

image feature, frame of view, spatial coherence, scale-dependent representa-

tion of shape, feature uniformity in a region, and odd-man-out phenomena.

We describe experiments with two algorithmic approaches, one based in spatial

�ltering, the other in �ne-to-coarse spatial aggregation of discrete events.

1 Introduction

\Texture" occurs when there are too many or too complex signal changes

within a contiguous region to describe in detail, so aggregate properties must

be used instead. Figure 1 illustrates. When focused on by a frame of view, the

�gure in the image patch is regarded in terms of its shape. As the frame of view
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zooms back to encompass surrounding image material, this same image patch

can assume any of several roles. Among them, it can blend in as an anonymous

part of a texture (Figure 1b), it can pop out as special event (Figure 1c),

or it can retain its role in de�ning the shape of the �gure (1d). Which of

these occurs has to do with the ways and degrees to which the focal �gure is

\like" its surroundings. This simple observation opens the door to a complex

interplay between several concepts widely believed to be of central importance

in computational vision. The notions of shape, features, texture, pattern,

scale, frame of view, salience, and the purpose of a visual representation itself,

all matter. This working paper is a discussion of the relationships among these

and a description of two experiments exploring new formulations of image

texture analysis. The topic is vast and this treatment is necessarily sketchy.

Our main intent is to begin to expose broad outlines of the interrelationships

between a spectrum of vital concepts.

1.1 Representing Image Structure by Labeling

The purposes for which a representation for image texture may be used are

many and varied. An exhaustive taxonomy would include the following.

� Classifying materials and their properties.

� Detecting boundaries between materials.

� Detecting boundaries between surfaces which may or may not

be made from the same material.

� Estimating surface shape and pose in space.

� Detecting signi�cant collections of markings on marked sur-

faces.

� Identifying, classifying, and evaluating spatially distributed ob-

jects or collections of objects in scenes. For example, when viewed

at a distance, the leaves of the tree become elements of a texture per-

mitting analysis of the tree's species and spatial extent.

� Picking out objects or other events di�ering from their sur-

roundings.

� Indexing object models. Based on the identities of texture parts,

a subset of object models in a database can be selected for possible

matches. See Figure 2.
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Figure 2: Texture label identities can be used for indexing models in a

database. a. Input image. b. Texture label description. Solid circle and

ellipse indicate \�gure" regions, striped circles denote the assertion of alternat-

ing �gure/ground with region scale, orientation, and spatial frequency drawn

in the style of Gabor �lters. c. Texture label identities (no spatial con�gu-

ration speci�ed. d. Indexing into an object database based on texture label

identities.
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Figure 3: Matching an observed con�guration of texture labels with the con-

�guration speci�ed by an object model.

� Matching to object models. Based on the con�guration of texture

parts, an object can be matched to an entry in an object model database.

See Figure 3.

� Indexing and initializing visual routines. In Figure 4, the task is to

count the number of \�ngers" on the object. The �ngers are �rst identi-

�ed coarsely as an oriented texture patch. The position and orientation

of this patch is used to initialize the parameters of a visual routine that

sequentially counts bar items.

Classically, work in image texture analysis has focused on the �rst four

items of this list. The task of classifying material properties calls for local

statistical measurement techniques; the task of identifying material and surface

boundaries has driven work in detection of texture edges; estimation of surface

geometry calls for analysis of of gradual changes in properties over regions. It

is worth turning attention, however, to the remaining purposes for texture

analysis.
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Procedure

Initialize: Set initial location, initial direction.

Iterate: Proceed in direction until next bar encountered;

increment counter.

Figure 4: Texture labels can be used to index, launch, and initialize visual

routines. Here, the routine performs a counting task by sequentially indexing

\�nger" objects whose orientation and starting point are indicated by a texture

label.

For these tasks, it is appropriate to consider representations for texture in

terms of concise labels declaring the presence and summarizing the properties

of texture regions. The di�erence between a label and, say, a broad \energy"

map of responses over an image, is that a label concentrates information in

one place, as it were, so that, following Marr's Principle of Explicit Naming,

it may be operated on as a unit. For example, in Figure 5 information useful

both to recognizing a broom and judging its pose in space is contained in the

spatial con�guration of the handle part and the brush part, which in turn

encapsulates the distribution and qualities of the bristles. We may certainly

gain access to more detailed information about subregions of the brush through

further inspection, but, as demonstrated by \Hidden Pictures" illustrations,

this dissection is not part of normal processing. Did you notice the pencil in

the broom drawing?

2 The Shape Realm and the Texture Realm

Spatially organized labels are useful because they make explicit the presence

and attributes of potentially important structure in images, and they provide a

substrate for exploiting spatial con�gurations of image events. The vocabulary
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Figure 5: Broom, and its description in terms of texture labels.

Figure 6: Variations in image texture that could be encoded either as distinct

label types or as parameterization of a single descriptor.

of label types depends of course on the purpose for which representation will

be used.

Distinctions between similar scene fragments can be described in terms

either of distinct labels, or di�erent parameterizations of a common label.

See Figure 6. The choice of representations employing a proliferation of label

type, versus parameters within a fewer number of types, is perhaps not a

natural one, but more an artifact of the way computer scientists organize data

structures. Of greater signi�cance is the di�erences in image structure a given

representation is intended to and able to distinguish, and the variations it is

intended to and able to generalize over.
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2.1 Complexity and Comprehensibility

To illustrate, consider a hypothetical visual subsystem of a bird, designed to

analyze clusters of berries. The input to this subsystem, after some sort of

feature detection, can be portrayed as dots indicating the positions of individ-

ual berries. Figure 7 presents clusters of dots due to various species of berry

bushes, some safe, some poisonous, in a taxonomy of six di�erent hypothetical

environments. Berry clusters in the sparse environments contain three berries,

clusters in the moderate environments contain 6 berries, while clusters in the

cluttered environments contain more than a dozen. \Comprehensible" envi-

ronments di�er from the \perplexing" environments by the complexity of the

algorithm required to distinguished safe from poisonous berry clusters, where

we assume some given tolerance for spatial localization.

Clearly, clusters with more berries can display more possible con�gurations

than clusters with fewer berries. In sparse environments it may be perfectly

possible to memorize individual dot patterns signifying safe versus poisonous

clusters. This is even possible even in a perplexing-sparse environment. To do

this in moderate and cluttered clusters however requires potentially an expo-

nentially increasing amount of memorization. Instead, as more data elements

are dealt with, the problem becomes manageable only when some simplifying

strategies can be brought into play. Informationally complex environments be-

come comprehensible when they a�ord rules about overall shape, pattern, uni-

formity, or other measures of aggregate element distribution. Sometimes these

generalize statistically over the details of the placement of individual data el-

ements, as in the uniform/clumpy distinction in the complex-comprehensible

environment, while sometimes they rely on very precise placement of data

elements forming regular patterns such as rows or circular �elds.

Even when the problem is not to simply categorize patterns, the overall

point is that there exists a continuum between a shape realm where analy-

sis can proceed in terms of the detailed con�guration of data elements, and

a texture realm where aggregate measures become appropriate. The texture

realm arises amidst the alliance of two factors. First, it becomes computation-

ally intractable to maintain highly detailed information about a large number

of highly complex objects. Second, in our world, most of the information

present in complex visual objects doesn't matter. Safe clusters of berries and

poisonous clusters of berries fortunately do not di�er only in the details of

their con�gurations; complex-perplexing environments occur rarely enough in

nature that we can usually avoid them.
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Figure 7: Con�gurations of safe and poisonous berries in six di�erent environ-

ments.
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2.2 Charting Attributes Across Shape and Texture

By regarding shape and texture as poles of a continuum, we direct attention to

the abstractions performed by a visual representation. In �gure 8 we present

a Shape/Texture Attribute Chart that explores the relationship between the

shape realm and the texture realm of local analysis and characterization of

visual properties. This chart organizes the relationships among many of the

most signi�cant and recognized components of the vocabularies used in the

�eld for describing both shape and texture. The framework for this view is

that the purpose of a descriptive language is to characterize some aspect of

the attributes and con�guration of primitive elements within a �eld of view.

Thus these descriptors begin to form a basis for labeling signi�cant structure in

images. In the chart, the visual elements themselves are considered only with

respect to the attributes of location and perhaps orientation. A comprehensive

chart would include a larger set of attritubes including color, motion, aspect

ratio and other aspects of element shape, and so on. Ways of dealing with

combinations of elemental attributes are addressed in Section 3.2.

Several interesting features of this chart serve as points of departure for

considering the central issues in the relationship between shape and texture.

� A description of element locations in terms of rote templates is expressed

in the top row. As discussed in the berry cluster example, the tractability

and usefulness of employing rote templates diminishes as the number of

data elements increases toward the texture realm.

� The second row shows how proximity abstractions evolve between the

shape and texture realms. Distance between two elements becomes av-

erage distance among a small number of elements, then �nally becomes

density in the texture realm.

Some interesting things happen when individual elements are given local

attributes. For purposes of illustration, orientation will be taken as a repre-

sentative local attribute. Attributes can be considered alone or in combination

with others, and also in combination with elements' locations.

� The third row explores elements' attributes alone. In the shape realm, el-

ements' attribute values themselves can be listed and compared. Moving

toward the texture realm, listings, or else histograms, of attributes and

their di�erences with respect to neighboring elements capture signi�cant

information. In the texture realm, it becomes sensible to characterize at-

tribute values using parametric statistical distributions such as number

of, mean, and variance of distribution modes.
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Figure 8: Chart characterizing shape/texture attributes across the shape and

texture realms.

11



� The fourth row considers abstract properties of the conjunction of ele-

ment attributes and location.

Within this row, we identify di�erent degrees of speci�city in character-

izing con�gurations or patterns, ranging from tight constraint to broadly

general regularity. In the shape realm where the attribute is element ori-

entation, some well-known shape �gures conforming to rigid templates

include the right-angle corner, T-junction, and cross. If templates are al-

lowed to deform, then parallel, and general-angle corner emerge as recog-

nizable types. Finally, the abstractions known as alignment, parallelism,

and perpendicularity are weaker characterizations of local shape-like con-

�gurations.

Moving to the intermediate realm, named �gure categories become more

complex, and hence sparser in relation to the possible con�gurations that

could be depicted. Triangle, box, and star are objects for which names

exist. More general abstractions that are sensible in this region include

radial structure, convexity, and alignment groupings.

In the texture realm, high constraint is re
ected in so-called repeating

textures whose elements form �xed local patterns. Lower constraint

gives rise to more varied patterns whose overall structure may still have

names like radial, concentric, and so forth. In some cases local groupings

of image elements contribute to emergent structure. For example, cuvi-

linear grouping gives rise to objects that become primitives for analysis

in terms of more shape-like descriptors. A uniform �eld di�ers from a

raked �eld in two regards. First, grouping of aligned elements produces

emergent curvilinear line or bar primitives, and second, the distribution

of image elements becomes clumpy.

Some descriptive properties are meaningful only in the shape realm or

texture realm, but not on the extreme other end of the continuum.

� Clumpiness in spatial distribution is a property that only makes sense

in regard to image texture. In the crossover region between shape and

texture realms where a small number of image elements are considered,

the relatively small number of modes of clumpiness can be enumerated.

Clumpiness re
ects the presence of structure at more than one scale.

� Variation in density of elements or attribute values (e.g. orientation)

across the frame of view is a phenomenon that occurs only in the texture
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realm. Shallow gradients and center-surround phenomena are character-

ized by various moments in the distribution. Sharp gradients are known

as \edges"; double edges are known as \bars".

In the next section we explore several central issues raised by the Shape/Texture

Attribute Chart: the role of scale, placement of the frame of view, the notion

of region coherence, and the phenomena of odd-man-out.

2.3 Signi�cant Scale

The prototypical examples depicted in the Shape/Texture Attribute Chart

consider con�gurations of image elements having attributes of location, and

possibly orientation. Let us introduce now the attribute of image element

size. In one sense, element size is just another continuous-valued attribute

that may be uniform or vary among image elements in a region, as shown in

Figure 9. But something more interesting happens when we consider image

element size in relation to the size of the frame of view. Figure 10 poses

the question of what aspects of spatial scale or size are most signi�cant in

characterizing the visual appearance of a region. Consider that under most

viewing conditions, the absolute size of a visible object forming a shape or

texture element is not stable, but depends on distance to and focal length of

the sensor. Similarly, the dimensions in the image of the frame of view just

encompassing a delineated object depends also on distance to and focal length

of the sensor. What is stable is their relative sizes. This suggests that the

image shape/texture characteristic worthy of measuring is the ratio of element

size to region size, as this is self-similar with respect to magni�cation.

Figure 11 thus depicts a Texture Scale-Space showing the relationship be-

tween two signi�cant scales, region scale and characteristic grain size of image

elements. Traversing vertically in this diagram is a \pure" scale change that

simply magni�es both scales uniformly while preserving their ratio.

The diagonal direction corresponds to varying the frame of view to en-

compass more or fewer image elements. The horizontal axis corresponds to

changing the characteristic grain size of image elements. This is depicted in

Texture Scale-Space diagram by changing both dot size and dot density (be-

cause characteristic grain size is determined by spans of whitespace as well

as dot size). The horizontal axis in Texture Scale-Space thus characterizes

the image region along the shape/texture dimension: Simple coarse-grained

forms whose con�gurations can be conveyed with relatively small amounts of

information lie in the shape realm, while spatterings of �ne-grained elements
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Figure 9: Texture elements in a region may be uniform or vary in their at-

tributes.

Figure 10: Which is more similar to a, b or c?
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Figure 11: Texture Scale-Space
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whose useful characterization is in terms of aggregate properties instead of a

detailed accounting, fall in the texture realm.

2.4 Frames of View

Visual Neurophysiology entertains the notion of a neuron's receptive �eld, the

region of visual space over which image stimuli in
uence the response of a cell.

By analogy, in the Shape/Texture Attribute Chart, circles depict a \frame

of view" on the input within which are found the primitive image elements

whose attributes and con�guration are to be described. The receptive �eld

model in Neurophysiology helps to frame the question of what information a

cell computes, by way of delineating its input domain. It is well recognized,

however, that the abstraction requires deliberation in its use, as when the

apparent receptive �eld changes with an animal's task. Similarly, the image

domain of view of an e�ective shape or texture descriptor need not be a �xed

circle as depicted in the chart, but may more pro�tably conform itself in

accordance with input data or task demands. For example, Figure 12 shows

a curvilinear line that can be identi�ed explicitly, i.e. labeled, as a coherent

and salient entity amongst cluttered and undi�erentiated surroundings. The

circular frame model should be viewed not as a prescription for some sort of

receptive �eld, but as an indication that certain input data is encompassed by

the descriptive label, and other is excluded.

A texture label is likely to be most useful when the information contained in

its parameters and by virtue of its very assertion o�ers maximal conformance

between observed data and the idealized model implied by the label. By

explicitly demarking a frame of view for an image shape or texture descriptor,

one could mean either of two things. The frame of view could indicate a

region of support, a portion of the image from which information is drawn to

compute the label's value. Alternatively, the frame of view could indicate the

region about which the label makes an assertion. The distinction is subtle but

important. The former meaning is about how the label is computed, the latter

is more concerned with how it is to be used later.

The tradition of \feature detectors" in computational models of percep-

tion further accustom our thinking to the idea that at least at some stages

information is conveyed by relatively independent channels; the meaning of a

label does not vary with the context in which it occurs. While we do not know

to what degree natural perceptual systems obey this principle, representation

becomes so much more di�cult to contemplate when it is violated, that we

often consent to accept the premise for purposes of study.

Labels should accurately re
ect the region location, size, and shape, plus
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Figure 12: Sensible frames of view for texture labels need not be circular.
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auxiliary properties and parameters, corresponding to causal phenomena in the

world. But balanced against this ideal, the representation should summarize

concisely the information most likely to be signi�cant elsewhere in the system

by limiting complexity to generalize over unneeded variation and detail.

2.5 Region Coherence

The assertion that an image region has this or that texture quality becomes

most meaningful when the region presents something of a coherent appearance,

and likewise, a texture boundary emerges only when locations compared across

the boundary are somehow more di�erent than locations compared within

regions on either side of the boundary.

A default starting point for considering placement of labels for shape-like

and texture-like image structure is geometrically compact, i.e. roughly circu-

lar, regions. Figures 13 and 14 suggests that certain placements of frames of

view seem to be more natural or meaningful than others. In the shape realm,

a label that \centers" the image event of, say, a T-junction, with respect to

the label's location coordinates will support more accurate computation with

respect to the junction's spatial relations to other image events. Note that

scale of frame size is a degree of freedom in this regard as well. Natural frame

placements are zoomed in to include just the image data �tting the descriptor's

shape or texture event model.

In the texture realm, a key feature of sensible region labels is uniformity

of the label property over the frame of view. If a descriptor declares event

density, then a frame placement over a region of uniform density provides a

meaningful result where a placement over an area of heterogeneous density

does not. Similarly, a label identifying a texture boundary seems most aptly

placed when the edge is centered in the frame of view. A descriptor whose

job it is to label lopsided events such as Figure 14f is intuitively strange,

probably because of our valid implicit beliefs that explicit characterization of

this \mixed" area is less ecologically informative than either a patch containing

only one type of texture exclusively, or the true border between two textures.

2.6 Odd Men Out

Sometimes a texture region is uniform in an attribute except for one local sub-

region. Often the exception subregion is ecologically signi�cant in re
ecting

an interesting object or feature distinguished in semantic value from the sur-

roundings. An appropriate representation might therefore make explicit such
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Figure 13: Natural (a) and unnatural (b) placements of a frame of view with

respect to a T-junction event occurring in image data. c and d re
ect the ideal

event model that would justify each of these placements.
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Figure 14: Image data (a) and a sensible frame of view (b) for labeling the

di�erentiated patch. c and d re
ect inappropriate scaling of a uniform region

model frame. e. Frame placement re
ecting nonuniformity in texture element

attributes. f. Required texture model that would justify frame placement in e;

note the strangely shaped boundary between subregions A and B associated

with di�erent element attribute values.
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an odd-man-out event with its own label, in e�ect subtracting it away, yet pre-

serving the ability to concisely describe the background as a whole by labeling

the remaining region as if the intruder weren't there.

Odd-man-out detection and visual interest operators are intimately tied

with dynamic processes of visual attention, which falls beyond the scope of

this discussion. Of particular relevance here however are questions about the

spatial scales at which odd-men-out are detected and reported.

Figure 15 shows how odd-man-out status interacts with region uniformity

across scales. A small region of interest frame focused only the odd-orientation

region possess high uniformity in its orientation attribute, and is thus well-

suited to support a descriptive label. Zooming back a ways, the region of

interest contains a mixture of orientations not easily summarizable. Zoom-

ing back more, the region of interest again becomes uniform with respect to

orientation, with the exception of the odd-man-out subregion.

Odd-man-out phenomena are not limited to spatially compact outliers.

Figure 12 showed a curve that has odd-man-out status with respect to a rela-

tively uniform texture background.

The next two stages in this discussion would address the following. First,

we are now equipped to examine characterization of texture boundaries across

scales, for example when a texture boundary is blurry or wiggly. Second, the

issue of grouping processes cuts across the shape and texture realms, and are

intimately concerned with label assertions.

The next two sections brie
y describe two experiments exploring these

ideas through computational models. The �rst is based on the �lter/energy

computing paradigm, the second on symbolic linking and value passing.

3 Experiments: Filter-Based Uniformity in Texture Scale-Space

3.1 Filter-Based Uniformity in Texture Scale-Space

This �rst experiment demonstrates the interplay between two kinds of scale

whose relationship re
ects the continuum between the shape and texture

realms of image events. Using a traditional �lter-based paradigm for com-

puting texture properties, we build a two-dimensional space of image maps

(texture scale-space) where the degree to which primitive image events in a

certain size range occur uniformly over a frame of view is indicated by response

strength or \energy" in an image map.

An experiment was carried out using as image data the cereal box of Figure
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Figure 15: a. Region containing an odd-man-out subregion. b. Appropriate

frame of view for labeling odd-man subregion properties. c. Inappropriate

frame of view. c. Appropriate frame of view for labeling large region, especially

if the odd-man subregion is signalled.
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16a, in two stages.

2

The �rst stage was to compute the amount of image energy

occurring at various grain sizes throughout the image. Since the geometric

property of image element size is independent of image contrast, it would be

inappropriate to use a purely linear �lter for this measurement. Instead, a

contrast normalization technique was used. Figures 16b-d shows image energy

at three sample grain sizes. The second stage was to consider frames of view of

di�erent sizes. This stage proceeded under the assumption that a texture label

is meaningful only when its support uniformly re
ects the image structure the

label claims to model. Thus, at the second stage a measure of uniformity of

grain size energy was applied over each frame of view. For e�ciency, pyramid

methods were used involving successive layers of blurring and subsampling.

Results are shown in Figure 17. Figure 17a shows energy deep in the

texture realm, where response strength re
ects small image elements over a

large region. Figures 17b through d show responses in the shape realm, where

frame size is only somewhat larger than elemental grain size. Figure 17b shows

large scale shape realm structure, Figure 17c shows medium scale shape realm

structure, while Figure 17d shows small scale shape realm structure. Note

that all of these highlight regions of printed text commensurate with the scale

of the label.

Because the results of this processing are a set of energy maps, this exper-

iment does not demonstrate computation of concise image texture labels as

such. An additional stage would be required to analyze the energy maps to

arrive a symbolic tokens or other some other more concise representation.

3.2 Fine-to-Coarse Aggregation of Texture Information

This second experiment aims to explore a strategy of building texture descrip-

tions across multiple scales by aggregating local neighborhood information

at successively larger scales. In common with the previous experiment, we

develop a notion of grading the salience or aptness of a texture descriptor

by virtue of attribute uniformity over a support region. Unlike the previous

experiment, the style of computing is not to perform linear and nonlinear

transformations of continuous-valued energy maps, but to propagate symbolic

information among a sparse array of sample points. Also addressed in this

experiment are notions of dynamically de�ned feature channels, and odd-man-

out detection.

As we have discussed, image descriptors in the texture realm summarize

attributes of small scale events over relatively larger regions. The simplest and

2

This experiment was performed with the aid of a CM-2 Connection Machine.
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Figure 16: a. Image used in Experiment 1. b, c, and d. Texture element grain

size \energy" at small, medium and large scales.
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b

c d

Figure 17: Region uniformity \energy" at various points in texture-scale-space.

a. Texture realm (large frame, small grain size). b. Shape realm (large frame,

large grain size). c. Shape realm (medium frame, medium grain size.) d.

Shape realm (small frame, small grain size).
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most familiar form of this operation is generalized image blurring, where the

primitive event is image intensity and the summarization method is weighted

averaging (e.g. Gaussian, Smoothed Gradient, Laplacian of Gaussian). Any

blurring kernel whose weights vary slowly over the support region delivers

output values which can vary only slowly across the image, and subsampling

in the output space is typically used for sake of e�ciency. Pyramid methods

are used to build hierarchies of successively coarser scale samplings of kernels

with successively larger image support.

One objective of Experiment 2 is to design e�cient layered methods for

aggregative computations other than weighted averaging. The information

conveyed by averaging methods is the amount of something{the amount of

lightness, the amount of energy at 45

�

and 6cpd, the amount of agreement

between image data and a given convolutional template, etc. An alterna-

tive representation deals explicitly in the values and distributions of parame-

ters. Figure 18 illustrates. The representation of texture orientation is often

modeled as distribution or histogram of responses to tuned �lters, mimicking

the response tuning curves of certain neurons. The phenomenon of texture

metamers suggests that at some point in the human visual system at least this

detailed information gets reduced into a much smaller number of independent

\channels".

One form of this transformation is the expression of region aggregate at-

tributes in terms of mean, variance, and possibly higher order moments of

the distribution of parameter values. Thus a channel doesn't carry \energy,"

but numerical values. A representation of attribute distributions in terms of

mean and variance of one or more modes of the distribution is particularly

convenient for local-to-global scale propagation of information because these

can be computed for a large scale distribution from the values for component

smaller scale distributions. Each mode is then analogous to an independent

channel for that attribute, up to some maximum distinguishable number of

modes. This sort of representation would re
ect the fact, for example, that a

bipartite oriented texture is perceived as either a single region or two disparate

regions depending not only on the mean orientations, but on the variances as

well.

A local to global scheme for propagating aggregate texture information

demands a layout of support cells covering the 2d image space at multiple

scales, and satisfying several constraints. First, it must be repeatable across

multiple spatial scales. Second, it should provide appropriate spatial sampling.

Third, it should support analysis of the uniformity of a property over a region

purely by examining summary information obtained at subregions. A layout

satisfying these constraints is illustrated in �gure 19. The basic idea is that at
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Figure 18: a. Image data in a frame of view, along with detailed accounting

of orientations and thicknesses of texture elements. b. \Energy" channel

representation in terms of the number of events within each bin of a histogram.

c. Numerical channel representation in terms of mean and variance of principal

modes in each distribution.
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each scale region cells occur in three overlapping �elds. The support of a cell

is imagined to be a circular region. Circular regions in a �eld are packed with

centers on a hexagonal grid. At a given scale, scale S

i

, three such �elds overlap

one another in staggered fashion (three phases). An array of larger scale cells

at scale S

i+1

, computed from these employs regions three times in diameter.

The support for aggregating parameter means and variances consists of seven

regions as shown. Subsampling occurs by choosing one S

i+1

cell for every nine

S

i

cells in a �eld, staggering the three �elds appropriately.

Although parameter mean and variances for a cell at scale S

i+1

are com-

puted from means and variances from seven cells occurring in a single �eld

at scale S

i

, the other �elds are valuable in computing other information. In

particular, a total of nineteen S

i

cells falls within the support region of a sin-

gle S

i+1

cell as shown in Figure 19c, providing a wealth of sample locations

for computing uniformity and gradient characteristics of a parameter over the

region. I have experimented with a number of uniformity measures; one of

the most e�ective is based on computing an edge measure in three di�erent

directions, and asserting uniformity when no edge is found.

Input data in this experiment is discrete events, black bars with variable

orientation and thickness. In Figures 20 and 21 test images were synthesized

by placing objects varying in orientation or size in a �eld. Figures 20a and

b and 21a and b show uniformity measures at two scales. Darker stippling

indicates greater uniformity. Values of means and variances in orientation or

element size are also maintained at each cell, along with event counts used in

the formula for combining means and variances. The uniformity measure can

be viewed as an indicator of the validity of parameter mean and variance as

providing a meaningful aggregate description of a cell's support region with

respect to that parameter. Odd men out are handled naturally, because at

an intermediate scale (corresponding to Figure 15c) uniformity is low, while a

zoomed-back �eld of view contains high uniformity except for one subregion

signifying the outlier.
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a

b

c

Figure 19: a. Field generated by overlapping three phases of circular frames

of view. b. Centering of S+1 scale region over one phase. c. The nineteen

frames o�ering support for texture analysis of an S+1 scale frame.
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a

b

Figure 20: Uniformity measures for two scales of analysis of element an ori-

entation channel. Darkness of hexagons indicates uniformity of the circular

frame centered on that hexagon. Result is overlain on original image data. In

addition to uniformity, each frame maintains orientation mean and variance

for its support region (not shown).
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a

b

Figure 21: Uniformity measures for two scales of analysis of element a size

channel. Darkness of hexagons indicates uniformity of the circular frame cen-

tered on that hexagon. Result is overlain on original image data. In addition

to uniformity, each frame maintains size mean and variance for its support

region (not shown).
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