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This paper offers computational theory and an algorithmic frame 

work for perceptual organization of contours bounding opaque oc 

cluding surfaces of constant lightness. For any given visual scene, 

a sparse graph is constructed whose nodes are salient visual events 

such as contrast edges, and L-type and T-type junctions of contrast 

edges and whose arcs are coincidence and geometric configurational 

relations among node elements. An interpretation of the scene con 

sists of choices among a small set of labels for graph elements re 

flecting physical events such as corners, visible surface occlusion, 

amodal continuation, and surface occlusion sans visible contrast 

edge (which perceptually give rise to illusory contours). Any given 

labeling induces an energy, or cost, associated with physical con 

sistency and figural interpretation biases. Using the technique of 

deterministic annealing, optimization is performed such that local 

cues propagate smoothly to give rise to a global solution. We demon 

strate that this approach leads to correct interpretations (in the sense 

of agreeing with human percepts) of popular simple "colorforms," 

figures known to induce illusory contours, as well as more difficult 

figures where interpretations acknowledging accidental alignment 

are preferred. © 1999 Academic Press 

1. INTRODUCTION 

The human visual system is remarkably adept at sorting out 

the various contrast edges found in images and inferring the 

surfaces that generated them, making explicit their overlap or 

depth relations. Often the physical configuration of objects is 

underconstrained by the limited information available in a sin 

gle view, and additional constraints or assumptions must be 

brought into play. Hence the premise underlying all proposed 

explanations of the Kanizsa triangle (Fig. 1) that the visual sys 

tem must be "filling in" information about contours not phys 

ically present in the image, based on rules or mechanisms 

operating with regard to the surrounding cues. The gestalt psy 

chologists concocted numerous demonstrations involving seem 

ingly simple figures of this sort to show that a wealth of biases 

and assumptions engage in a complex interplay as the visual 

system settles on preferred interpretations [16]. The challenge 

facing the modern computational study of perceptual organi 

zation is to formalize and extend the gestaltists' intuitive in 

sights in terms of testable theories and implementable algo 

rithms. 

This paper assembles a computational theory underlying per 

ceptual organization of occluding surfaces largely from com 

ponents already existing in prior literature, but argues that the 

more difficult problem is the design of representations and pro 

cedures satisfying constraints at the algorithm level. For this 

we propose a novel approach incorporating several well-known 

computational techniques including token grouping, graph la 

beling, the construction of energy surfaces, and optimization by 

continuation methods. 

While many accounts have been proposed for the shapes 

adopted phenomenally by illusory contours, e.g. [22, 7, 28], ex 

planations for why they are seen at all are of two sorts. One 

class of explanation treats the image itself as the primary object 

of interest, which it is the visual system's job to elaborate and 

refine. Accordingly, mechanisms are proposed whereby certain 

types of visible image events such as contrast edges, contour 

junctions, and thin lines and their endpoints, cause the assertion 

of additional events in the image representation such as illusory 

contours and surface brightness variations [7]. 

The second class of explanation, shared by the present work, 

maintains that illusory contours are only a byproduct of com 

putations for which the primary goal is to infer 2^-dimensional 

properties of the physical world such as surfaces, their colors, 

their boundaries, and the occlusion relations among them [13]. 

These explanations observe empirically that virtually all illu 

sory contour phenomena are associated with evidence of surface 

depth discontinuities [9], and they embrace extensions to the the 

ory accounting for transparency effects. See Fig. 2. Moreover, 

this class of theory falls within the modern computational vision 

paradigm conceiving perception as the application of deeply 

justified prior knowledge and assumptions about the world to 

underconstrained input data, in order to infer information not 

directly measurable. For example, it is widely accepted that the 

visual system prefers interpretations of image events that arise 

generically instead of interpretations requiring postulation of un 

likely "accidents" of arrangement, lighting, motion, viewpoint, 

etc. [10, 23]. 

From this vantage point of seeking to infer physical properties 

from underconstrained image data, Williams [26, 27] pioneered 
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FIG. 1. Kanizsa triangle. 

a formulation for "Colorforms"1 figures adapting the classic line 

labeling approach of Guzman [8] and Waltz [24], in which the 

contour interpretation problem becomes one of assigning labels 

to sparse image events based on two sorts of constraints, physical 

feasibility and figural biases. More recently, Geiger et al. [6] 

formulated a dense field relaxation labeling approach whereby 

interpretation labels are diffused, pinned at the relatively few 

locations containing contrast data in the input image. Each of 

these approaches carries drawbacks which are alluded to below; 

a new synthesis is called for which builds upon this progress. 

This paper offers a new formulation for the perceptual organi 

zation of occluding contours. Computational theory is developed 

that incorporates a richer ontology of image junction interpre 

tations than previously has been entertained, holds places for 

an extensible set of weak constraints or biases associated with 

figural geometry and accepts input from additional sources of in 

formation such as depth-from-stereo. On the algorithmic level, 

we employ a token-based representation that is parsimonious 

and efficient in the declaration of equivalence classes of im 

age events. The formulation permits information from spatially 

localized cues to be used purely locally as well as to propa 

gate globally. Finally, the solution algorithm contains acces 

sible "hooks" for interaction with top-down or other modules 

to influence and explore viable perceptual alternatives. 

2. COMPUTATIONAL THEORY FOR OCCLUDING 

OPAQUE SURFACES 

A computational theory for the interpretation of images from 

the domain of constant intensity opaque surfaces under occlu 

sion can be decomposed roughly into two realms, as identified 

by Malik and Shi [11]. Ecological optics is about what can hap 

pen in the mapping from the physical world to images, while 

ecological statistics is about what tends to happen. These are 

1 Colorforms is a popular toy consisting of vinyl sheets of plastic cut as gra 

phic objects which are laid out to create pictures. Construction paper is a similar 

medium. 

discussed below in turn. Falling outside the scope of this paper, 

but fully subject to extensions, are theoretical consideration of 

painted or shaded surfaces, thin-lines, moving surfaces, trans 

parent surfaces, and lighting effects such as shadows. 

2.1. Ecological Optics: Junction Label Catalog 

With regard to modeling the physical domain of interest and 

images resulting from it, Williams focused on the depth ordering 

of complete surfaces at different places in the image as they 

overlap one another. Here we are less concerned with tracing 

the depth trajectories of contours over long distances and more 

with articulating and disambiguating among local image cues. In 

particular, we introduce in Fig. 3 a catalog of possible physical 

interpretations of image events occurring along contrast edges 

as a result of local surface shape and occlusion. This catalog 

enumerates interpretation labels for three types of image event, 

the boundary-contour, T-junction, and L-junction. 

The most interesting distinctions among interpretation labels 

arise from generic versus nongeneric, or "accidental," events. 

This distinction has been explored at length [18, 4], and its rig 

orous justification requires careful analysis of a given visual 

world of interest and an organism's place in it. For the present 

purposes, we employ an informal conceptualization and define 

an event as generic when the number of parameters required 

to specify its specific occurrence is fully the number of param 

eters required to specify any event of that class. For example, 

as shown in Fig. 4 in general four parameters are required to 

specify the relative pose of two line segments in scale-space 

(Ax, Ay, A9, Ascale). Any class of configurations of line seg 

ment pairs that could be specified with one fewer parameter, 

e.g. colinear, same size, parallel, would be regarded as having 

one degree of nongenericity. Parallel and same size would be 

nongeneric of degree two, and so on. The interpretation label 

ontology of Fig. 3 considers events of qualitative nongeneric 

ity degrees 0 and 1 only, arising from "accidental" alignment 

FIG. 2. a. Image lightness illusion for which Anderson [2] has proposed an 

explanation based on inferences about surface transparency, b. This figure some 

times held as a counterexample to surface depth inference as an explanation of 

illusory contours because neither surface is perceived to lie in front of the other. 

Note however that each line termination along the curving illusory contour is 

in fact local evidence for occlusion, and the lesson to be taken from the global 

percept may be, instead, that the representation can be factored; the human vi 

sual system is capable of declaring the presence of a surface occlusion boundary 

without committing to the direction of occlusion. 
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FIG. 3. Catalog of interpretation labels for boundary-contours, t-junctions, 

and l-junctions. Heavy lines denote contrast edges, solid thin lines denote modal 

completion contours, dashed lines denote occluded contours. Arrows indicate 

direction of surface overlap; tip of arrow indicates occluded surface. 

A surface that overlaps another of the same lightness gener 

ates an invisible contour boundary known as a modal completion 

edge. It is important to distinguish the common usage of this term 

as referring to phenomenal appearances generated by certain 

stimuli, from our definition of a modal completion edge as the 

formal assertion of surface overlap sans contrast edge—whether 

it is perceived in some fashion or not. The present work makes no 

attempt to predict the vividness with which illusory contours will 

be experienced by human observers, nor which side of a modal 

completion edge will appear lighter or darker than the other, 

nor to what degree. A modal completion edge is regarded as a 

nongeneric, or accidental, event because in general two parame 

ters would be required to specify the colors of different surfaces 

instead of the single parameter characterizing a shared value. 

Referring to Fig. 3, an image L-junction arises from one of 

six causes. LI and L2 are generic, occurring when a contour 

boundary undergoes an orientation discontinuity. In its graphic 

depiction, an arc helps to distinguish a convex corner from a 

concave partial hole, in addition to the drawn arrows. The re 

maining four L junction labels are degenerate T-junctions arising 

from the nongeneric event of the occluding surface matching the 

lightness of one of the occluded surfaces. 

A fully comprehensive accounting of the ecological optics 

of the colorforms domain would include additional labels for 

image events of qualitative nongenericity degree 2 and higher. 

See Fig. 5. Although images do occur requiring these labels, they 

are relatively rare and are unnecessary to the development of 

the conceptual and algorithmic machinery sought by this paper. 

of contour edges or "accidental" congruity in the colors of dis 

tinct surfaces, as discussed below. Departing from previous ex 

positions, however, we regard it as necessary to go beyond purely 

qualitative characterizations of genericity and accidentalness 

and consider graded penalties for different severities of acci 

dents. The quantitative consequences of accidental alignments 

and the like are developed in Section 2.2. 

The most elemental relation between imaged surfaces is a 

boundary contour created by the occlusion of one surface by 

another, the direction of which is depicted by a wedge arrow. A 

boundary contour thus takes one of two label values indicating 

which surface is in front. 

We assume in the generic condition that different surfaces 

will have different lightnesses. Generically, therefore, the oc 

clusion of two surfaces A and B by a third, C, creates a visible 

T-junction in which the stem and both halves of the bar appear 

as contrast edges. The generic T-junction is of two types, labels 

Tl and T2, depending upon whether A or B is in front of the 

other. The depiction of these junctions includes a dotted line 

indicating the presence of a contour boundary occluded by the 

nearest surface, Surface C. However, two additional causes for 

observed T-junctions exist, T3 and T4, for which surface C is 

behind. These are nongeneric because they involve the coinci 

dental alignment of the boundary contours of the two distinct 

surfaces, A and B. 

Nongenericity 

degree 

parallel 
length 

/ 

/ position 

FIG. 4. Two line-segment illustration of nongenericity. In general, two line 

segments are related by four degrees of freedom. Increasing degrees of non 

genericity are introduced in stages by constraining parameters specifying rela 

tive location, orientation, and size. 
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FIG. 5. a. The interpretation of a white square overlapping and aligning the grey square requires a junction label of nongenericity degree 2, shown in b, due 

to accidental edge alignment and surface color match, c. An X-junction label, nongenericity degree 2, due to double accidental edge alignment. The algorithm 

implemented limits itself to junctions of nongenericity degree 0 and I. 

With regard to X-junctions in particular, these can indeed occur 

through certain configurations of opaque surfaces, but we defer 

their consideration for future work because X-junctions become 

really interesting only in the context of a richer physical imaging 

domain including surface "atmospheric" effects of transparency, 

smoke, fog, and shadow [1,2]. 

2.2. Ecological Statistics: Figural Biases 

Once the mapping between an underlying physical domain 

model and a catalog of image events is spelled out, it remains 

to further refine prior knowledge of the visual world needed to 

constrain interpretations of potentially ambiguous image data. 

We need to articulate in greater detail a topography, over the 

space of things that could occur, of what is more likely to occur. 

The delineation of labels associated with generic versus non-

generic or accidental conditions does part of the job: generic 

interpretations will be preferred over nongeneric ones. But what 

is the relative genericity of a surface color match on the one hand, 

and a contour alignment, on the other? Or what is the trade-off 

between a very good alignment and two so-so ones? We find it 

necessary to depart from any purely qualitative accounting and 

begin to entertain quantitative measures for relative preferences 

of image events' interpretations with respect to one another. This 

strategy is in keeping with Williams' establishment of a quanti 

tative objective function expressing figural biases according to 

empirically observed perceptual phenomena. 

More formally, we express penalties for junctions adopting 

certain labels, in the form of an energy cost. The terms con 

tributing to energy cost are all mathematical expressions engi 

neered to take particular functional forms justified on the basis 

of commonsense evaluations of sample example configurations 

and the human visual system's behavior on simple stimuli. Our 

choices for these expressions are presented in the Appendix, but 

they are subject to modification, refinement, and testing against 

either human psychophy sical data or arguments from first princi 

ples deriving from statistical analysis of the visual world. What is 

most important for the present purposes is to get their qualitative 

behavior right, more or less. To date we include the following 

figural biases, illustrated in Fig. 6: 

• Generic positioning. An energy cost Eaa (aa :: accidental 

alignment) is imposed whenever two edges align with one an 

other but their associated junction labels interpret them as arising 

from unrelated contours. Eaa reaches a maximum for putatively 

unrelated edges that abut and align perfectly and decreases with 

distances and misalignment. 

• Contour smoothness. An energy cost Ecs (cs :: contour 

smoothness) is imposed whenever two distinct contours are hy 

pothesized by their associated junction labels to belong to a 

common contour, blocked from view by occlusion. The energy 

cost decreases with nearness and smooth continuation of the 

two contours and increases as the gap between them increases 

or their hypothesized invisible join becomes more contorted. 

Low Energy Cost 

** 

-H-

High Energy Cost 

}> 

Figural Bias 

Generic Positioning 

Contour Smootlmess 

Generic Surface Color E» 

Figural Convexity E/c 

FIG. 6. Schematic illustration of quantitative figural biases. See text for ex 

planation and the Appendix for mathematical expressions developed to reflect 

these biases. 
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FIG. 7. A trade-off in Eaa (accidental alignment) versus Emc (modal completion) energy costs occurs as a pair of aligning l-junctions increase in distance from 

one another, reflecting a transition in preference from a modal completion interpretation to an independent object interpretation. 

• Generic surface color. An energy cost Emc (me :: modal 

completion) is incurred for the assertion of junction labels propos 

ing occlusion by a surface that happens to be the same color as the 

occluded surface. As with contour smoothness, this cost is at a 

minimum when the hypothesized modal completion edge is very 

short and smooth and increases with its length and contortion. 

• Figural convexity. An energy cost Efc (fc :: figural convex 

ity) is incurred for hypothesizing locally concave occluding sur 

faces. Curving boundary contours assigned overlap labels corre 

sponding to concave occlusion boundaries, or partial holes, are 

assigned cost according to the angular extent. Likewise, concave 

corners, corresponding to Type L2 L-junctions, incur energy cost 

according to their internal angle. 

Embedded in these figural biases are the determinants of the 

trade-offs between accidental alignment, smooth continuation, 

and modal completion interpretations under ambiguous image 

evidence. For example, Fig. 7 shows, as two L junctions contain 

ing aligning edges are brought nearer, where we have effectively 

chosen to place the trade-off between an accidental alignment 

interpretation and a modal completion interpretation. 

Of course, it would be easy to augment these figural bi 

ases with additional ones motivated by psychophysical or other 

sources of evidence. For example, Williams [26] included a bias 

for perceiving nearby parallel lines as figure. We are fully open 

to augmenting the figural biases presented above with others, 

and we welcome the notion that these need not be fixed in form, 

but are subject to adjustment dynamically in the course of per 

ception by top—down mechanisms, global contextual cues, or 

other visual modules. 

3. REPRESENTATIONAL AND 

ALGORITHMIC PROPOSAL 

In this framework the core problem of perceptual organization 

of occluding contours becomes one of assigning interpretation 

labels to perceptually significant events in image data. Our pro 

posal is to form a junction graph whose nodes are symbolic 

tokens denoting boundary-contour, t-junction, and l-junction 

events, and whose links represent coincidence and geometric 

configurational relations among these events, where these links 

provide and propagate constraint on node labels. Search over 

the space of junction label assignments is conducted by allowing 

local preferences to propagate around the graph as labeling deci 

sions are made gradually, using a continuation method. The over 

all approach of searching a hypothesis space governed by weakly 

interacting constraints through parallel iterative local propaga 

tion is descended from relaxation labeling [20, 15,3, 14]. 

3.1. Energy Cost Objective Function 

In general, any global interpretation must obey constraints of 

local overlap consistency; that is, physically feasible interpreta 

tions obey the condition that the overlap directions occurring at a 

junction match those of the boundary contours forming the junc 

tion. Note, however, by the example in Fig. 8 that this need not 

FIG. 8. Strong local figure/ground pressures can prohibit globally consistent 

figure/ground assignments for all contour edges. 
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be a strict requirement; in fact, humans perceptually can enter 

tain interpretations that, because of strong local figure/ground 

pressures, must be globally inconsistent with regard to occlu 

sion direction along visible contours. Conveniently for trading 

off overlap consistency with other evidence, the local overlap 

consistency constraint can be expressed in the same energy cost 

terms as figural constraints: 

• Neighbor consistency. An energy cost Enc inc :: neighbor 

consistency) expresses a penalty incurred for every instance that 

ajunction interpretation label conflicts with that of its constituent 

boundary contours. 

Any assignment of interpretation labels to a figure gives rise 

to a global interpretation energy cost simply by summing the 

energy costs of all boundary contours and junctions. Figure 9 

illustrates optimal and suboptimal labelings of the Kanizsa tri 

angle. Our figural biases are chosen so that optimal energy costs 

will correspond with perceptual interpretations preferred by hu 

mans. Note, for example, in Fig. 9a that modal completion con 

tours are asserted to enclose the central white triangle, while 

amodal continuation contours complete the occluded black tri 

angle and the occluded black circles. But Fig. 9b shows that 

another interpretation that is fairly easy for humans to see—the 

circles as holes revealing a black background—pays only a small 

energy penalty for figural nonconvexity, while Fig. 9c shows a 

strongly nonpreferred interpretation—isolated objects with no 

occlusion—which pays a very high penalty for accidental edge 

alignments. In all cases presented in the paper, unless other 

wise noted, the optimal labeling is attained by the algorithm of 

Section 3.4. 

3.2. Link Formation by Token Grouping 

Input data consists of chain-coded contours, such as found 

by edge detection and curve tracing processes, and annotated 

with the colors of surfaces on each side. Contours are broken at 

corners and merged at points of smooth alignment, giving rise to 

boundary-contour tokens, as shown in Fig. 1 la. Locations, ori 

entations, and curvatures of contour ends are estimated by fitting 

circular arcs at each end. Cliques of two and three nearby ends 

forming L- and T-junctions are found by clustering and perform 

ing simple geometric tests, l-junction and t-junction tokens 

are created accordingly. Simple techniques work for computer-

generated graphic data and video frames of physical construction 

paper scenes, but obviously they would need much refinement 

for photographic imagery. 

The junction graph contains two kinds of links. First, co 

incidence links denote associations between l- and t-junction 

tokens and the boundary-contour tokens contributing to their 

formation. These represent the visible structure of the contrast 

edges in the scene. Second, alignment links declare pairs of con 

tour ends that are preferably near to and align with one another 

across pairs of L- or T-junctions. See Figs. 10 and 1 lb. Search for 

aligning contour pairs is conducted by directing an expanding 

beam from each leg of every l-junction token and the stems of 

t-junction tokens and by testing junction tokens that it encoun 

ters for alignment and compatibility of surface colors on each 

side. We offer in the Appendix a heuristic mathematical expres 

sion assessing degree of alignment which reflects an estimate of 

the likelihood that the two contour ends belong to the same un 

derlying contour which may have been rendered invisible, either 

by occlusion or color match. Note that, although our measure 

roughly includes terms for both distance and bending energy, 

no attempt is made to infer the detailed shape of the missing 

contour. In cases where more than one good alignment match is 

found, a heuristic algorithm is used to prune the set of alignment 

links to one per l-junction leg and t-junction stem. Alignment 

links found for the Kanizsa triangle are shown in Fig. 1 lc. Al 

though this works for simple illusory contour figures this step 

begs for a more sophisticated approach, as mentioned further in 

the discussion section (Section 4). 

3.3. Subtleties of Evidence Propagation 

At the outset of the computation before any evidence has 

been considered, no junction has any basis for asserting any one 

interpretation label over others. The catalog of interpretations 

available to a junction (or boundary contour) j forms an inter 

pretation belief vector b/ of elements bjj, where / refers to the 

/th interpretation label, 0 < / < L. L is the number of interpreta 

tions available to that junction's type (i.e., L=2 for a boundary-

contour, L — 4 for a t-junction, L = 6 for an l-junction). 

One way to imbue the representation with the expressive 

power to declare that multiple interpretations remain possible 

at ajunction would be to allow multiple beliefs bjj to take the 

value 1, holding open the possibility that the /th interpretation 

is true for multiple choices of /. A final global interpretation 

of a scene would occur after junction interpretations have been 

eliminated by switching their label entries to 0, leaving only a 

single 1 entry in each junction's belief vector. In this scheme, 

propagation of evidence around the junction graph would con 

sist of propagating vetos of junction interpretations, based on 

consistency across coincidence and alignment links, in the man 

ner of discrete junction labeling. Such a strategy would rely 

heavily on combinatoric search and backtracking. Using a very 

different labeling ontology, Williams, instead, turned to a global 

integer linear constrained optimization formulation. We believe 

that this approach violates the Principle of Graceful Degradation 

[12] because it places severe restrictions on the consistency of 

the input data and because it foregoes purely local use of lo 

cal evidence, as evidenced by its prohibition of globally incon 

sistent but perceptually phenomenal inteipretations, such as in 

Fig. 8. 

A "softer" representation which we propose admits contin 

uous valued beliefs, 0 < bjj < 1. Because each visible junction 

is assumed to arise from one and only one physical cause, we 

impose the further constraint, J^ bjj = 1, giving the belief vec 

tor resemblance to a probability distribution over inteipretation 

states. The vector, bj = {l/L, 1/L,..., 1/L} represents the ab 

stinence of preference for any interpretation. 
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FIG. 9. Three among many possible interpretation labelings of the Kanizsa triangle and their associated energy costs. All labelings are stable at high inverse-

temperature, but a (the global optimum) is converged to by the algorithm annealing from low inverse-temperature. Shading resembling shadowing is added to 

enhance visualization of program output. 

■ ' 

Propagation of evidence via the neighbor consistency con 

straint consists of accumulating energy costs for every available 

interpretation label of each junction, due to the interpretation 

vectors of its link neighbors in the junction graph. Figure 12 in 

cludes illustration of the consistency relation between the left leg 

of an l-junction (j = 2) and the north end of a boundary-contour 

(j = 1). The contributions of energy cost Enc by the boundary-

contour, due to the l-junction, and vice versa, are generated 

according to the following propagation consistency matrices, 

respectively (refer to Fig. 3). 
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FIG. 10. Four boundary-contours forming two l-junctions and their corre 

sponding junction-graph containing coincidence links (C) and an alignment link 
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FIG. 12. a. An incompatible assignment of junction labels due to: (1) incom 

patibility between an l-junctions and one of its associated boundary-contours; 

(2) incompatibility between modal completion and amodal contour continuation 

interpretations; (3) incompatibility between overlap directions across an amodal 

continuation link. b. A compatible assignment of junction labels. 
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FIG. 11. a. boundary-contours tokens for the Kanizsa triangle figure, b. Alignment links are created between pairs of l-junction legs and pairs of t-junction 

stems that are sufficiently near and aligned with one another and whose bounding surface colors match, c. l-junctions (solid lines) and alignment links (dashed 

lines) found for the Kanizsa Triangle figure. 
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A 1 entry reflects label incompatibility. For example, belief 

that an l-junction should be interpreted as a convex orienta 

tion discontinuity, b'2 i ^ 0, leads to an energy cost penalty for 

interpretation label 2 of the boundary-contour, £12, but none 

for interpretation 1. Similar overlap compatibility matrices can 

be generated for overlap consistency links between boundary-

contours and t-junctions, and for alignment links between pairs 

of l-junctions and the stems of pairs of t-junctions. 

There is, however, a subtle consideration that must be ad 

dressed concerning the elimination of bias under ignorance. Sup 

pose that for the label belief terms b' in expression (1) we use the 

pure belief vector values bjj. Then in the case that junction 2 is 

neutral in its interpretation belief, i.e. £>2,/ = \, unequal amounts 

of energy cost will be propagated through the matrix leading to a 

biased contribution to boundary-contour 1 's energy cost vector, 

L 6 J 

This bias can be eliminated by interposing a transformation 

in each belief vector before multiplying it by the propagation 

consistency matrices. The transformation is a shift to a zero-

based representation for belief [21]. A zero-based representa 

tion maps the interval [0, 1] to the interval [—1, 1], such that a 

uniform probability distribution maps to zero. For this, we use 

the formula2 

b' = 2/jlog'2 - 1. 

3.4. Optimization by Deterministic Annealing 

(3) 

For any given states of belief vectors held by their link neigh 

bors, a node in the junction graph can compute an energy cost 

2 I thank Josh Tenenbaum for suggesting this functional form. 

distribution over its catalog of interpretation labels by summing 

energy costs associated with figural biases and with overlap con 

sistency constraints, as determined by alignment and coinci 

dence links. In order to give local evidence the opportunity to 

propagate around the junction graph, we desire that belief vectors 

not immediately choose lowest energy cost labels in a winner-

take-all fashion, but instead iteratively gravitate from neutrality 

toward a single interpretation. A mechanism for accomplishing 

this is provided by the technique of deterministic annealing [5, 

19]. An inverse-temperature parameter fi is used to govern the 

mapping between energy cost and belief distribution using the 

Softmax operator, 

where / is an index of time or iteration number. Low inverse 

temperature spreads belief more evenly over all available states, 

while rising inverse temperature corresponds to "cooling" to 

ward a winner-take-all state. All experiments reported in this 

paper were performed using a simple predetermined annealing 

schedule consisting of 10 iterations at each of five temperatures, 

0 = 0.5, 1,2,3, 10. 

4. RESULTS AND DISCUSSION 

4.1. Representative Results 

In addition to the Kanizsa triangle result of Fig. 9a, Figs. 13 

and 14 present input images, along with interpretations found by 

the algorithm for several representative situations. Figures 13a,b 

are another figure from Kanizsa's book, showing interweav 

ing due to the greater cost of modal completion contours versus 

amodal continuation contours, per unit contour length. 

Figures 13c,d demonstrate a scene whose preferred interpre 

tation includes a nongeneric edge alignment at a T-junction. 

Figure 14 illustrates how the algorithm is affected by degradation 

in its feature input. The algorithm scales linearly in computa 

tional cost with the amount of feature input, but not surprisingly 

requires correct junction features in order to infer contour occlu 

sions correctly. Local interpretations are, however, robust with 

respect to disruptive feature input elsewhere in the scene. 

Figure 15 shows that the algorithm is amenable to accept 

ing augmented evidence such as stereo cues. Stereo evidence of 

relative surface depth at some L-junctions of the Kanizsa trian 

gle was simulated simply by injecting energy cost for junction 

interpretations violating the stereo depth cues. Note that the re 

sulting weaving interpretation matches the human perception of 

the stereo scene. 

4.2. Algorithm Level Considerations 

The junction catalog and figural bias formulation we have 

presented as computational theory for perceptual organization 

of occluding surfaces could in principle be deployed under a 

• 
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FIG. 13. Results, a/b. Note interweaving interpretation of Kanizsa [9, Fig. 2.13]. c/d. The preferred percept requires a nongeneric interpretation (interpretation 

label T4) for the upper right T-junction. 

variety of algorithmic approaches. The choice of representa 

tions and computing strategies is in many ways more difficult 

than the computational theory itself because it involves subtle 

engineering judgements regarding underspecified requirements 

of the larger visual system within which this module will ul 

timately be embedded. Let us review some of the motivations 

behind the choices made by this work: 

I. Appropriate granularity. Following the Principle of Ex 

plicit Naming [12], we employ computational elements that treat 

as unit entities any sections of contour or surface region that 

behave equivalently. Accordingly, boundary contours, T- and 

L-junctions, and local surface patches are made explicit as tokens 

amenable to symbolic grouping, linking, labeling, and propaga 

tion efficiently over large distances. This is in contrast to a dense 

field representation more amenable to inherently slow diffusion-

style processes [6]. It remains an open question how an ex 

tremely coarse symbolic token grouping and labeling approach 

will scale to more complex scenes characterized by greater den 

sity of significant image events. 

II. Preference for local evidence. Demonstrations such as the 

Devil's Pitchfork, and many human observers' reported expe 

riences of difficult displays such as random dot stereograms, 

suggest that the human visual system does not combine all avail 

able evidence into a single problem statement leading to a global 

all-at-once solution, but instead uses information locally to con 

struct local solutions, which in turn propagate constraints to 

neighboring regions. 

III. Appropriate modularity. It is well known that human per 

ception of Colorforms displays allows multiple interpretations 

and that these are in many cases cognitively penetrable [17], that 

is, influenced by conscious thought. More generally, engineering 

modularity argues that perceptual organization at this level be 

relatively self-contained, yet present an interface to other com 

ponents of the visual system that admits meaningful influences 

upon both the parameters and the outcome of the processing, as 

external evidence demands. This appears in the present work in at 

least two ways: in the ability of the energy cost objective function 

to accept manipulation of figural biases and accept externally de 

rived evidence, and in the ability, not explored in this paper, for 

external processes to locally adjust the malliability of an inter 

pretation by manipulating the annealing processes, for example, 

locally lowering inverse-temperatures in certain regions. 

By focusing on labeling of boundary contours alone, our 

approach cleanly factors away and postpones decisions about 

surface segmentation—which local surface patches are associ 

ated with one another. In addition to posing a separate surface 
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FIG. 14. Even in a scene comprised of opaque uniformly colored objects, simple local edge detection and grouping does not produce clean T- and L-junctions. 

Note how highlights on the railings (a) introduce edges not corresponding to object boundary contours (b). These disrupt the junction graph, leading to locally 

incorrect occlusion inferences (c). Artificially removing the highlight (d) allows these features to be found by simple methods, to the benefit of the resulting 

interpretation (f). 



PERCEPTUAL ORGANIZATION OF SURFACES 81 

e c ̂  

FIG. 15. Stereo evidence influences surface overlap perception: a. Stereo disparities at pacmen lead to perception (under cross fusing) of the white trian 

gle weaving behind a flat planar surface, b. Input from a stereo module was simulated by effectively constraining certain L-junction interpretation labels 

according to surface overlaps allowed by the local disparity: vertical ovals indicate [.-junctions constrained to be of type L3 or L4; horizontal ovals indicate 

l-junctions constrained to be of type L5 or L6. c. Resulting interpretation. Note that this interpretation agrees with human perception, including the inference that 

the black triangle must be a hole. 

segmentation stage, the framework we have presented raises 

many other possibilities for future work, including enhancement 

of the collection and massaging of input data, improvements to 

the evidence propagation machinery [25], shifting resolution of 

ambiguous alignment links to the annealing stage, and exten 

sions to motion and transparency. 

ends e\ and e%, 

-G(bub2)), 

Ecs 

F — OF 

APPENDIX 

The following mathematical expressions are engineered to 

reflect energy costs obeying figural biases. Energy costs are 

computed based on the spatial configuration of the boundary-

contour tokens b\ and bi associated with legs of l-junctions or 

stems of stems t-junctions, and these boundary-contour tokens' 

where C(e\, <?2) is a measure of the degree to which the two ends 

are cocircular and pointing toward one another: 

C(ei, = max | 0, 3 max 0, ( 1 -

x max! 0, 1 — 

+ «)H 

4 
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FIG. 16. a. The angles <j>\ and <fn used to measure the alignment of two 

boundary contour ends. b. The lengths 1\, h, and d used to measure the scale-

normalized distance between the ends of two boundary-contours. 

(see Fig. 16a) and G(b\, bi) is a scale-normalized measure of 

the distance between the ends, 

G(bx,b2) = 
d 

(see Fig. 16b). 

The alignment link quality used to select the best among all 

candidate alignment links is also based on the spatial relationship 

of the ends of boundary contour ends: 

Q = 
1 

C(ei,e2) 
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